
An introduction to automatic
program repair

Luke Braithwaite

Peterhouse Outreach Event — 1st February 2024

Hello & Welcome

Outline

• What are software bugs

• What is automatic program repair?

• Modelling code using graphs

• Deep learning on graphs

1

The effect of bad code...

The largest miscarriage of justice in British history

Source: The Economist

Loss of a $125 million martian rover

Source: The LA Times

2

A bug is incorrect or undesirable program behaviour

caused by an error or mistake in the code.

3

Bug types

Bug type Description

Syntax error Code breaks the language’s rules e.g. typos.

Semantic error Code is valid but breaks type/semantic rules

e.g. using a string to index an array.

Logical bugs The program runs but output is incorrect/not

desired e.g. loop condition is incorrect.

Performance bug The code has a performance issue e.g. code

uses too much memory or CPU time.

Security bug The code is insecure e.g. improper verification

or buffer overflow.

4

Your turn

Spot the bugs!

name = imput ('What i s your name : ')

age = input ('What i s your age : ')

choice = i n t (input (' P ick a dr ink (0 − 3) : '))

d r i nks = [' wine ' , ' beer ' , ' port ']

can_dr ink = age > 21

p r i n t (f ' Can { name } dr ink : { can_dr ink } ')

p r i n t (d r i nks [choice])

5

Answers

Spot the bugs!

name = input ('What i s your name : ')

age = int(input ('What i s your age : '))

choice = i n t (input (' P ick a dr ink (0−2) : '))

d r i nks = [' wine ' , ' beer ' , ' port ']

can_dr ink = age >= 18

p r i n t (f ' Can { name } dr ink : { can_dr ink } ')

p r i n t (d r i nks [choice]) # check that 0 <= choice <= 2

6

Automatic program repair

Using machine learning (ML) to automatically detect and repair

bugs in source code.

Source

code input
ML model

Locations of

bugs and a fix

Bug detector

model

Bug repair

model

ML model

7

Can we just use ChatGPT?

8

Source code as natural language

• We could treat source code as sequence of tokens and
then apply techniques from NLP.

• ChatGPT and other generative models can do this (sort of)

• But important semantic information is encoded in the
structure and relationships in the code.

• e.g. variable referencing, function calls, type relationships.

• Want a way to encode this relational information.

Use a graph

9

What is a graph?

Graphs are a way to model relational data.

Nodes model the entities we care about and edges model the

relationships between nodes.

edge

1

2

5 4

7

36

node

10

Examples of graphs

1

2

5 4

7

36

• Computer networks

• Social networks

• Airspace and airways

• Source code

11

Common graph representation

of code

12

Dependency graphs

Dependency graphs model the dependency structure

main.py
import A
import B
import C

B.py
import D main.py

A.pyB.pyC.py

D.py

13

Call graphs

Call graphs model the function caller-callee structure

def f2():
return f2()

def f1():
return f3()

def main():
f1()
f2()

main()

f1()f2()

f3()

14

Control flow graph

Control flow graphs model the execution paths through a

program

1 i = ...
2 if i == 1:
3 for j in range(10):
4 print(j)
5 print("finished")

1 2 3 4 5

15

Other graph representations

• Dependency structure over tokens (Raychev et al., 2015)

a = b =⇒ b
dependency−−−−−−→ a

• Type dependencies (Wei et al., 2019)

a : int = 1 =⇒ int
type−−→ a

• Combining all of the above (Allamanis et al., 2021)

• Consider higher-order relations (Georgiev et al., 2022)
16

Deep learning for APR

17

An (abridged) introduction to deep learning

• Machine Learning — using
computers to learn from

data

• Recent advances in ML is
due to deep learning

• Deep learning uses large
neural networks to learn

from examples and then

generalise to unseen data

18

A (modern) history of deep learning

19

Motivating graph neural networks (GNNs)

20

Motivation I: The locality principle for images

A pixel’s value depends on the value of its neighbours

• Key idea that underpins large amount of image processing.

• Basis for convolution
• Image is just a grid of pixels
• Convolution lets you apply a kernel over the image to detect

features such as edges

• A pixels values is calculated by finding the weighted sum of its
neighbours

• 3blue1brown has a very good youtube video about it if interested

21

https://www.youtube.com/watch?v=KuXjwB4LzSA

Motivation II: Convolution

Source: A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way

22

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Motivation III: Images are graphs

0 1 0

1 1 1

0 1 0

⇐⇒
0 1 0

1 1 1

0 1 0

Can we perform convolutions on graphs?

Yes

23

Message passing on graphs

• Message passing generalises convolutions to graphs

• We can define image convolution using this

v7 v8 v9

v4 v5 v6

v1 v2 v3

v′5 =
9∑

i=1

wi · vi︸ ︷︷ ︸
message from vi to v5

• We use this to define message passing layers to process
graphs

• This in turn is used to define Graph Neural Networks (GNNs)

24

Message passing layers

Source: Wikipedia

1. Compute message sent

from each neighbour by

calculating ψ(x0, xi)

2. Aggregate all the messages

using a permutation (order)

invariant function

3. Pass the aggregated

representation through a

non-linear activation

function φ(·)
25

https://en.wikipedia.org/wiki/Graph_neural_network

Graph Neural Networks (GNNs)

Source: Wikipedia

1. Message passing (convolution) to update representation

2. Local pooling to coarsen or downscale the graph

3. Global pooling (readout) to get model output
26

https://en.wikipedia.org/wiki/Graph_neural_network

GNNs for automatic program repair

GNNs outperform other methods on APR tasks

Allamanis et al. (2021) Georgiev et al. (2022)

27

Next steps

• More data and experiments

• Improving user experience (UX)

• Developing better model architectures

• Accounting for higher-order (multi-node) relationships and
structures — hypergraphs

• Language-agnostic graph representations

28

Conclusions

• ChatGPT is not always the answer

• Structure and relationships are useful

• Graphs are a natural way to model code

• We can use GNNs to automate bug detection and repair

• GNNs outperform NLP and traditional ML methods

• Graphs are useful in other problems and domains

29

Questions

30

References I

Allamanis, Miltiadis, Henry Jackson-Flux, and Marc Brockschmidt (2021).

“Self-Supervised Bug Detection and Repair”. In: Advances in Neural

Information Processing Systems. Vol. 34. Curran Associates, Inc.,

pp. 27865–27876.

Georgiev, Dobrik Georgiev, Marc Brockschmidt, and Miltiadis Allamanis

(2022). “HEAT: Hyperedge Attention Networks”. In: Transactions on

Machine Learning Research. ISSN: 2835-8856.

Raychev, Veselin, Martin Vechev, and Andreas Krause (2015). “Predicting

Program Properties from ”Big Code””. In: Proceedings of the 42nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages. POPL ’15. New York, NY, USA: Association for Computing

Machinery, pp. 111–124. ISBN: 978-1-4503-3300-9.

31

https://openreview.net/forum?id=gCmQK6McbR

References II

Wei, Jiayi et al. (2019). “LambdaNet: Probabilistic Type Inference using

Graph Neural Networks”. In: International Conference on Learning

Representations.

32

	The effect of bad code
	References

