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Background

* Relational data

* Heterogeneous graphs
* GNNs

* Heterogeneous GNNs



Relational data is everywhere

Proteins

Robotics

Chemistry

Social networks
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Graphs

A graph is a set of nodes connected by edges
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Heterogenous data

Heterogeneous data multiple node and edge types
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Graph Neural Networks

Node features are updated using local aggregation
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Heterogeneous Graph Neural Networks
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Sheaves for heterogeneous data

e Cellular sheaves
e Neural Sheaf Diffusion

 Sheaves model heterogeneity



Motivating sheaves

Local data assighment — consistent global representation

axb#*c+d

Stalk Restriction map
RY | e= | R? RC | e= | R%
e o e o




Cellular sheaves

* Node stalks F (u) attached to each node
* Edge stalks F(e) attached to each edge
* Restriction map ¥, for each node-edge incidence pair
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So what is a sheaf?

Opinion dynamics!'! provides a nice perspective

Fu<eXy is the public opinion \ Public discourse space
Private opinion /
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[1] Hansen and Ghirst, ‘Opinion Dynamics on Sheaf Discourses’, 2020, arXiv:2005.12798 [math.DS]



Why sheaves?
The underlying topology models the heterogeneity

x € C°(G,F)

*Here C°(G, F) = ®@,ev F(u), or the block matrix formed by stacking each node stalk representation.



Neural Sheaf Diffusion!’]

Attaches a sheaf to a Graph Convolutional Network
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[1] Bodnar et al., ‘Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs’, NeurlPS 2022.



NSD performs well on benchmarks

NSD is smaller than R-GCN with similar performance

LastFM MovielLens
ACM DBLP IMDB AUPR AUROC AUPR AUROC
Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1

GAT 7580 +10.69 77.91+8.66 9547+044 9570+042 8412+0.96 8531+092 GAT 62.88+0.18 50.69 £0.63 97.06+0.24 97.47+0.21
GCN 89.09+3.66 89.14+3.60 96.31+0.73 96.57+0.63 82.41+1.15 83.99+0.92 GCN 96.84 £0.10 96.42+0.08 99.57+£0.03 99.51+0.03
HAN 86.95+6.19 86.64+643 9474+0.81 95.01+0.73 13.53+0.24 38.70+1.13

R-GCN 95.81+0.39 95.75+0.39 96.79+0.39 97.01+0.34 88.16+0.67 89.08 +0.63 HAN 82.48 £3.86 /8.47+3.04 63.49+0.14 52.06+0.27
HGT 93.24+319 93.30+291 9391+1.08 94.26+1.09 87.74+0.76 88.45+0.71 R-GCN 96.86 £ 0.07 96.97 £0.05 99.06 £0.05 99.13+0.04
Sheaf-NSD 94.97 +0.41 94.94+0.42 96.69+0.82 96.89+0.79 86.70+0.90 87.50+0.78 HGT - - - -

Sheaf-NSD 111x smaller than R-GCN | Sheaf-NSD 97.16 £0.19 96.58 +0.18 99.66 + 0.04 99.57 + 0.03|

Sheaf-NSD 209x smaller than R-GCN



Sheaves implicitly learn types
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HETSHEAF

A general framework for heterogeneous sheaf neural networks



HETSHEAF pipeline

Feature
Preprocessing




Feature preprocessing

Linear layers used to project features to same dimensionality
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Heterogeneous sheaf predictors

node features in F(u) type of node u type of edge e

Y
Tuﬂ(u,v) = (I)(Xu: Xy, (), P(v), l/)(e))

node features in F(v) / type of node v



Sheaf-NSD

Sheaf-ensemble

Ty Ty Ty Ty
e e
Fuse = MLP(x,||x,) Fuze = MLP, (%, [|x,)

Sheaf-NE Sheaf-EE Sheaf-TE
Ty Ty Ty Ty Ty Ty
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e e e

Fuze = MLP(Xu”Xv”Tu”TV)

* Each type is assumed to be a one-hot encoded vector, 7, = €y, fore € £and 7, = ey, foru € V.

Fuge = MLP(Xu”Xv”Tu”TVHTe)

Sheaf-types




Final architecture
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Type information improves performance
The sheaf learners achieve SOTA or competitive results

Table 5.3: Performance on heterogeneous link prediction benchmarks. Results for the three
base SheafGNN architectures and baselines from the literature are shown. The table shows the
average and standard deviation of the binary AUROC and AUPR scores after 10 runs with the
top three models, coloured First, Second and Third. The runs labelled ‘~’ were caused by an
out-of-memory error of the GPU.

Table 5.1: Performance on heterogeneous node classification. Results for the SheafGNN ar-
chitectures and baselines from the literature are shown. The average macro and micro F1 score
and standard deviation after 10 runs. The top three models are coloured by First, Second and

Third.
ACM DBLP VDB LastFM MovieLens
Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 AUPR AUROC AUPR AUROC

GAT [69] 75.8 + 107.0 77.91 +8.66 9547+ 0.44 9570+ 042 84.12+0.96 85.31 = 0.92
GCN [47] 89.09 +3.66 89.14+3.60 96.31+0.73 96.57+0.63 82.41+1.15 83.99+0.92 GAT 62.88+£0.18  50.69 £0.63  97.06+0.24 97.47 +0.21
HAN [74] 86.95 £ 6.19 86.64 643 94.74+0.81 9501+0.73 13.53%0.24 38.70 =1.13 GCN 96.84 = 0.10 96.42+0.08 99.57+0.03 99.51 £0.03
RGCN [62] 95.81 £0.39 95.75+0.39 96.79+0.39 97.01+0.34 88.16 +0.67 89.08 + 0.63 HAN 82.48 = 3.86 78.47 £3.04 63.49 =0.14 52.06 =0.27
HGT [41] 93.24+3.19 93.30+291 93.91+1.08 94.26+1.09 87.74+0.76 88.45 *0.71 _
0(d)-nsd [7] 94.64 +1.02 94.59 +1.03 96.32+0.46 96.55+0.42 86.35+1.29 87.20+1.07 R-GCN 96.86 + 0.07 96.97 £0.05 99.06 £0.05 99.13 +0.04
Diag-nsd [7] 9442+ 051 94.42+0.48 9525%0.70 9552+ 0.67 86.36=0.94 87.26 % 0.78 HGT - - - -
Gen-nsd [7] 94.97 £ 0.41 94.94+0.42 96.69+0.82 96.89=0.79 86.70+0.90 87.50=0.78 Sheafnsd 9716 019 96.58 + 0.18 99.66 « 0.04 99.57 + 0.03
Sheaf.TE (ours) 96.11+0.49 96.09 = 0.51 97.93 +0.36 98.08 = 0.31 86.85 = 0.81 87.67 = 0.80 e DO A e
Sheaf-ensemble (ours) 96.16 + 0.52 96.12 + 0.54 97.46 + 0.64 97.62+0.60 86.92+ 1.10 87.79 + 0.95 Sheaf-TE (ours) 97.71£0.52  97.23+0.63  99.65+0.03 99.57 +0.04
Sheaf-NE (ours) 96.13 + 0.39 96.09 + 0.38 97.68 + 0.55 97.83+0.51 86.87 =1.01 87.73 +0.81 Sheaf-ensemble (ours) 98.21 +0.15 97.71+0.18 99.68 +0.04 99.59 + 0.04
Sheaf-EE (ours) 96.39 + 0.37 96.35+0.36 97.57+0.69 97.73*0.62 87.12+0.75 87.88 *0.67 Sheaf-NE (ours) 97.90 £ 0.68 97.51*+0.51 99.66 =0.04 99.57 = 0.04
Sheaf-NT (ours) 96.12 +£0.36 96.12 +0.32 97.88 +0.47 98.04 +0.43 86.92+0.95 87.76+0.85 Sheaf-EE (ours) 97.51 + 0.44 96.91 + 0.52 99.67 = 0.05 99.57 + 0.05
Sheaf-ET 5.84 = 0.65 95.82+0.65 97.69 +0.47 97.83 +0.47 86.12+0.82 87.05=0.6 D PO D T

cafET (ours) i o 2 o Sheaf-NT (ours) 98.24 = 0.13 97.80 = 0.18 99.61 +0.03 99.52 = 0.03

Sheaf-ET (ours) 97.84 = 0.32 97.260 = 0.003 99.64 £ 0.03 99.54 = 0.03




Future work

* Lifting to hypergraphs
* (Generalised sheaf message passing

* Topological sheaves



Accounting for higher order interactions

Hypergraphs connect an arbitrary set of nodes

\ Hyperedge



Generalised sheaf message passing
(1)




Sheaf Topological Neural Networks

Traditional discrete domains
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*Adapted from Papillon et al., ‘Architectures of Topological Deep Learning: A Survey on Topological Neural Networks’, 2023, arXiv:2304.10031 [cs.LG]



Summary

* Sheaves provide a natural way to model heterogeneity

 Sheaf predictors may be parameterised to include type information
* Type information improves model performance

* These results are competitive or SOTA across all benchmarks

* We can define more general sheaf message passing approaches



