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Abstract

Bias and Variance in Machine Learning

Luke Braithwaite, Supervisor: Professor Gavin Brown

The bias-variance tradeoff is the classical explanation for the generalisation behaviour of ma-
chine learning models across supervised learning tasks. This project explores how well the
bias-variance framework explains the observed behaviour of machine learning algorithms. We
present the bias-variance decomposition for two commonly used regression and classification
losses: squared and cross-entropy. These losses are examples of Bregman divergences. We
then derive the generalised bias-variance decomposition for Bregman divergences. In addition,
we demonstrate that bias-variance theory correctly explains the model behaviour across vari-
ous supervised learning regimes and, when considered with recent literature, the behaviour of
ensemble methods. The report concludes by examining modern deep learning architectures
and other large models, demonstrating how classical bias-variance theory must be adapted to
explain their behaviour. We explore the double-decent risk curves produced by deep learn-
ing architectures. These can be explained by a monotonically decreasing bias and unimodal
variance terms. Bias-variance theory remains a valuable framework for reasoning about the
behaviour of machine learning models, but there are still open questions. Further research
on the dynamics of bias-variance theory and deep learning could help improve practitioners’
understanding of deep learning models and lay the groundwork for a unified theory of deep
learning.
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Notation

Sets and Spaces

Rn set of n× 1 vectors with real entries.

Rn
∆ set of n× 1 probability vectors.

X input space.

Y output space.

H hypothesis space, or the function space of all functions from X to Y .

F model family.

Probability Theory

X random variable.

P (X) probability distribution of the random variable X.

P (X, Y ) joint distribution of the random variables X and Y .

pX(x) probability mass function for the random variable X.

fX(x) probability density function for the random variable X.

FX(x) cumulative density function for the random variable X.

E[X] expected value of the random variable X.

Linear Algebra

a vector.

A matrix.

In identity matrix of size n.

⟨·, ·⟩ inner product of two vectors.

∥·∥2 Euclidean distance of a vector or the ℓ2-norm of a vector.
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Machine Learning

D,Dn data set of n samples, Dn = {(xi, yi)}n
i=1.

x feature vector.

y output label or target.

(xi, yi) pair of input vector xi with its label yi.

f( · ;D) model f ∈ F trained on the data set D.

ℓ(y, f(x;D)) loss of the model f(x;D).



Acronyms

DNN deep neural network.

ERM empirical risk minimiser.

i.i.d. independent and identically distributed.

LLM large language model.

ML machine learning.

SGD stochastic gradient descent.

SLT statistical learning theory.



CHAPTER 1

Introduction

Are bigger models always better? Since the rise of deep learning, modern machine learning
(ML) has become very big, with companies such as Google and Meta releasing larger and larger
models with billions of parameters. These deep/complex neural networks have state-of-the-art
performance across various problem domains. Just how large have these models become? If
we consider the rise of large language models (LLMs), we can see that over the past five years,
the number of model parameters has approximately doubled every three to four months. Each
model shown in Figure 1.1 was considered state-of-the-art at the time of release.

To describe the behaviour of these models, we need a formal mathematical framework that
allows for reasoning about ML models, preferably in a way that accounts for a model’s com-
plexity. This report will use the principle of empirical risk minimisation and the larger frame-
work statistical learning theory, as this allows for a discussion of model performance in terms
of generalisability or how well the models can predict and model unseen data. However, we
also need an approach applicable to actual models. To do this, we shall explore generalisability
through the lens of the bias-variance tradeoff, the classical explanation for describing model
behaviour and generalisation.

1.1 Project Aims

This project explores the bias-variance decomposition of various loss functions and uses these
decompositions to examine and explain the model’s behaviour. In particular, we would like to
know when the bias-variance tradeoff adequately describes a model’s behaviour and, import-
antly, when it does not. With this in mind, we hope to answer the following questions:

1. Is the bias-variance tradeoff a helpful way to describe model behaviour?

2. How can the bias/variance of a model be reduced?
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Figure 1.1: Increase in the size of recent large language models; the exponential growth can be seen.
Currently, the number of parameters we can train a model on doubles around every four months. The
data for this chart is included within Chapter A.

3. When does the classical bias-variance tradeoff break down?

4. Does the bias-variance tradeoff hold for modern ML practice?

1.2 Report Structure

We now give a summary of each chapter.

• Chapter 2 provides the necessary context and background for the bias-variance tradeoff
and the fundamental concepts of machine learning. In addition, the bias-variance decom-
position for the squared loss is presented.

• Chapter 3 explores the topic of Bregman divergences and derives their generalised bi-
as/variance decomposition. Using this generalised decomposition, we derive the decom-
position of the KL divergence, which we use to decompose the cross-entropy loss.

• Chapter 4 looks at the impact of regularisation on the bias and variance of a model.

• Chapter 5 explores ensemble methods and how they can be used to reduce the bias or
variance of a model.

• Chapter 6 explores how bias and variance behave for deep learning models and how the
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classical theory breaks down.

• Chapter 7 summarises and presents the findings of this report.

We will begin our journey into bias and variance by introducing the necessary mathematical
background and fundamental machine learning concepts of statistical learning theory and model
generalisation.



CHAPTER 2

Setting the Scene

This chapter aims to define the key machine learning concepts and the context needed to
understand the later chapters of this report. We shall explore critical machine learning concepts
and defined supervised learning tasks; then discuss statistical learning theory and finally move
on to define bias and variance in the context of machine learning.

2.1 Supervised Learning

This project focuses on supervised learning, where every input has an output ‘label’ we are
trying to predict. Given a data set of independent and identically distributed (i.i.d.) samples
drawn from some unknown joint distribution, we try to predict a function f such that f(x) = y.
The formal definition is given below as Definition 1 and is adapted from Russell and Norvig
[66, p. 671].

Definition 1 (Supervised Learning).
Given a data set D = {(xi, yi)}N

i=0 drawn i.i.d. from the joint distribution of the vector
spaces X and Y where xi ∈ X and yi ∈ Y . The aim is to learn a function f : X → Y
such that f(xi) = yi, a machine learning algorithm A is used to do this.

2.2 Loss Functions

We generally consider models that are function approximators. The aim is to find the function
that best approximates the mapping between the input space X and the output space Y . We
shall denote a generic model by f(x; w) where x is a feature vector. In most cases, we assume
x ∈ Rd. The vector or matrix w are the model parameters, where w ∈ Rp has p parameters.

Loss functions are used to say how good the approximation is; they measure how much the
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model’s output differs from a label for a given input. In regression cases, the output is commonly
a single value in R, so the squared loss is commonly used,

ℓ (y, f(x; w)) = 1
2(y − f(x; w))2. (2.1)

As we have a way to measure the performance of the model, we may define training error,
which is the average loss over a training set D = {(xi, yi)}N

i=1, or

ℓtrain = 1
N

N∑
i=1

ℓ (yi, f(xi; w)) , (2.2)

this converts finding the best function approximator to an optimisation problem. We aim to
find w∗ where

w∗ = arg min
w

ℓtrain.

To do this, gradient-based optimisation methods are used.

What about classification tasks? We could use the squared loss and consider classification a
discrete regression task. However, this is not ideal; for most classification tasks, we want an
idea of the uncertainty of the result, so probabilistic classification is used. To use a classic
example, say we want to distinguish between images of cats and dogs. Instead of simply giving
the label cat or the label dog, the classifier will return a probability distribution in which each
entry is the probability the input is class c. So, the loss function should measure the distance
between the distributions. We do not currently have a formal notion of distance, but this will
be explored in more detail in Chapter 3. Information-theoretic measures are often used, and
cross-entropy is the most common.

Definition 2 (Cross-entropy).
The cross-entropy between discrete distributions p and q over the same probability space
X , denoted as H(p, q), is defined as follows:

H(p, q) def= −
∑
x∈X

p(x) log q(x), (2.3)

where p(c) is the probability of class c.

Cross-entropy can be considered from the perspective of information theory, which defines
cross-entropy as ‘the expected number of bits needed to compress some data samples drawn
from the distribution p using a distribution code q’ [54, p. 205]. It can also be thought of in
terms of expectations

H(p, q) = −Ep[log q]. (2.4)

As we have introduced supervised learning and the concept of loss functions, we shall now look
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at generalisation, overfitting, and underfitting.

2.3 Generalisation

Models are usually trained so inference can be performed on unseen data. The performance of
a model on unseen data is known as generalisation, an unseen validation set commonly used
to measure the generalisability of a model. The average over all samples is called the model’s
expected risk.

Before continuing, we define three terms: error, risk, and loss. Error is the difference between
a single predicted value and a single actual value, loss is the average error over the training
data set, and risk is the average error over all data.

Why do some models generalise well? To answer this, we need to understand the impact
of model complexity. If a model is too simple, it will not accurately model the underlying
distribution from which the samples are drawn. This means there is a systematic error between
the model and the underlying distribution. In this case, the model is underfitting. Otherwise,
if the model is too complex, it will be too sensitive to small changes in the data set. This is
known as overfitting. Figure 2.1 demonstrates both overfitting and underfitting in polynomial
regression, demonstrating a sweet spot in model complexity.
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Figure 2.1: Demonstration of underfitting and overfitting when performing polynomial regression
where Gaussian noise N (0, 5) has been added. (LEFT) Underfitting. (CENTRE) Actual polyno-
mial. (RIGHT) Overfitting.

2.4 Empirical Risk Minimisation

statistical learning theory (SLT) is a mathematical framework that can be used to understand
and derive learning algorithms. It was developed in the 1960s by the Soviet mathematician
Vladamir Vapnik; it was then rediscovered and popularised in the 1990s. One part of this
framework most relevant to this project is the Empirical Risk Minimisation principle [75]. In
Section 2.2, we stated that we could estimate a model’s ‘error’ by averaging the loss over a
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data set. SLT calls this the empirical risk over a data set Dn = {(xi, yi)}n
i=1 and is defined as

follows.

Definition 3 (Empirical risk of a model).

R̂(f,Dn) def= 1
n

n∑
i=1

ℓ(yi, f(xi)) (2.5)

The population risk is the ‘true’ risk calculated on all possible data we may encounter. Com-
paring it to the empirical risk, it can be considered the case when n =∞. The population risk
includes all data we may encounter, including unseen data. Due to this, it is also known as the
generalisation error. It is defined below.

Definition 4 (Population risk of a model).

R(f) def= E(x,y) [ℓ(y, f(x))] =
∫∫

ℓ(y, f(x))p(x, y) d x d y

In supervised learning, training data is used to learn the function f . By comparing Equa-
tion (2.2) and Definition 3, the training error is simply the empirical risk of the trained model
on the training set. So, if we can find the global minima of the training error, the model
obtained would minimise the empirical risk. This model is called the empirical risk minimiser
(ERM).

Definition 5 (Empirical Risk Minimiser).
The empirical risk minimiser is defined as,

f ∗
n

def= arg min
f

[
R̂(f,Dn)

]
. (2.6)

We can also define the population risk minimiser, the model that minimises the population risk.
This is the model that we would like to find. However, it is not computable in real scenarios as
it requires the full underlying distribution, which is usually unknown. The definition is similar
to Definition 5.

Definition 6 (Population risk minimiser).
The population risk minimiser, also known as the Bayes predictor or the Bayes model, is
defined as

f ∗ def= arg min
f

[R(f)] . (2.7)
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2.4.1 The Estimation/Approximation Decomposition

So far, the theoretical model can take any form. However, this is rather unrealistic; instead,
we shall limit ourselves to the model family F . Consider the model in F that minimises the
population risk. We can define it simply as

f ∗
F

def= arg min
f∈F

R(f). (2.8)

The empirical risk is simply an estimate of the population risk; the ERM does not necessarily
minimise the population risk. It could be the global minimum for the empirical risk but only a
local minimum for the population risk or not a minimum for the population risk at all. There
will be a gap between the risk of the Bayes model and the ERM. This difference is known as
the excess risk or the generalisation gap.

Definition 7 (The excess risk of the ERM).
Let f ∗

n be the ERM; its excess risk is defined as

Rexcess(f ∗
n) = R(f ∗)−R(f ∗

n). (2.9)

Figure 2.2 visually represents everything we have discussed. The space of all possible functions
is called the hypothesis space and is denoted H.

f ∗

f ∗
F

f ∗
n

F

H

Excess Risk

Figure 2.2: Visualisation of the function space we have been discussing where f∗
n is the ERM, f∗

F
is the population risk minimiser for a model family F and f∗ is the Bayes model. The excess risk is
displayed in red.

This is a good start, but the errors due to the chosen model family and the size of the data set
are combined in one term. We want to separate them. Further manipulating Equation (2.9)
obtains the approximation/estimation decomposition.
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Definition 8 (The estimation/approximation decomposition).
Given the ERM f ∗

n the estimation/approximation decomposition of its excess risk is

Rexcess(f ∗
n) = R(f ∗)−R(f ∗

F)︸ ︷︷ ︸
approximation error

+ R(f ∗
F)−R(f ∗

n)︸ ︷︷ ︸
estimation error

. (2.10)

This decomposition is relatively trivial, but the introduction of the ±R(f ∗
F) terms leads to a

helpful interpretation of the two terms.

Approximation error is due to restricting the model family F . In most cases, we have
F ⊂ H, so most likely f ∗ /∈ F . This depends solely on the chosen model family and can be
treated as constant with respect to the random variable Dn.

Estimation error is due to the restriction of the data set size. As we increase the size of
the data set, the ERM gets closer to f ∗

F . This depends on a random variable Dn, so is itself a
random variable.

A similar visualisation to Figure 2.2 is possible where the approximation and estimation errors
are added.

f ∗

f ∗
F

f ∗
n

Excess Risk

Approximation Error

Estimation Error

F

H

Figure 2.3: Visualisation of the function spaces and models we have discussed above with the added
approximation and estimation errors.

Figure 2.3 allows us to relate the approximation/estimation decomposition to model complexity
and under/overfitting. We need to get f ∗

F as close to f ∗ to decrease the approximation error.
To do this, making F span more of H is necessary, which increases model complexity. We shall
now deal with the estimation error.

To decrease the estimation error, we could increase the amount of data used to train the model;
this results in an ERM closer to f ∗

F . The larger the model family F , the more training samples
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are needed to train the model. Another way, given the same data set, is to reduce the model
complexity as this will reduce the size of F .

The approximation and estimation errors are in tradeoff, so we choose an appropriate model
complexity that gives sufficiently low approximation and estimation errors. Graphing the estim-
ation and approximation error terms as they change with increasing model complexity results
in Figure 2.4.

Model Complexity

Figure 2.4: An illustration of the approximation error/estimation error tradeoff. The approximation
error is shown in green, the estimation error in blue, and the excess risk in red. We can see the
signature U-shaped risk curve and the minima or ‘sweet spot’ that is the tradeoff.

2.4.2 Underfitting and Overfitting

Figure 2.4 describes over/underfitting in terms of the approximation/estimation errors.

Underfitting occurs when the approximation error is too high. Generally, this is when the
function space F is too small relative to the amount of training data.

Overfitting occurs when the estimation error is too high. Generally, this occurs when F is
too large relative to the amount of training data.

2.5 Bias-Variance Decompositions

So far, we have discussed generalisation through the lens of SLT. This approach is rather elegant
in principle, but it is very difficult to use in practice. Expect for the most straightforward
examples, it is impossible to calculate the Bayes model and the population risk minimiser
for a given model class. Instead, the bias-variance decomposition is used because it is more
convenient to work with and estimate.

Imagine we want to train a model that throws a dart at a dartboard, and we train multiple copies
of the same models using different random training sets. We could describe the distribution of
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the darts in terms of how far they are from the bullseye, how ‘off’ our estimate is from the true
value, and how spread or varied the darts are. If the distance from the cluster’s centroid is far
from the bullseye, the model has a ‘high bias’, and if the darts are very spread out, the model
has a ‘high variance’. Figure 2.5 visualises the effect of bias and variance.

low bias,
 low variance

low bias,
 high variance

high bias,
 low variance

high bias,
 high variance

Figure 2.5: The effect of bias and variance. Each dot is a possible model output, the star is the
centroid of the predictions, and the bullseye is the true value.

Geman et al. [36] demonstrated that it was possible to decompose the expected squared loss
into a bias, variance, and noise term, which we derive in Section 2.6.

2.6 Decomposing the Squared Loss

Before jumping into the derivation, it is helpful to give an overview of what we want to prove
and the intermediate results. The first step is to decompose the expected risk of the model into
two terms: the noise and the excess risk. The excess risk is then further decomposed into bias
and variance terms. If we consider the process like a parse tree, it would look like this.

expected risk

excess risk

bias + variance + noise

Figure 2.6: Decomposition tree for the squared loss.

2.6.1 Definitions

We now define both the expected classifier and the Bayes model for the squared loss. We shall
begin with the expected classifier, as this is the simpler of the two; it is the expected value of
f(x;D) over D.
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Definition 9 (The expected classifier).
The expected classifier f̄ is defined as follows,

f̄(x) = ED[f(x;D)] =
∫

f(x;D)pD dD. (2.11)

We now move on to the Bayes model, or the population risk minimiser, for the squared loss.

Definition 10 (The Bayes model for the squared loss).
The Bayes model for the squared loss is

f ∗(x) = arg min
f∈F

R(f) = Ey|x[y]. (2.12)

Proof. The population risk of squared loss is defined as R(f) = E(x,y)[(f(x) − y)2], the
Bayes model f ∗(x) is the population risk minimiser, so it is simply

f ∗(x) = arg min
f

R(f).

We begin by expanding the square to obtain

f ∗(x) = E(x,y)[f(x)2 − 2yf(x) + y2].

As we want to minimise, we differentiate with respect to f(x). This yields

∂

∂f(x) E(x,y)[f(x)2 − 2yf(x) + y2] = E(x,y)[2f(x)− 2y]. (2.13)

We can then decompose Equation (2.13) into two expectations using the expectation algebra
to derive

E(x,y)[2f(x)− 2y] = Ex[Ey|x(2f(x)− 2y)] = Ex
[
2f(x)− 2Ey|x[y]

]
. (2.14)

The minimum occurs when Equation (2.14) is 0. Solving this equation gives f(x) = Ey|x[y].
This gives us f ∗(x) = Ey|x[y], which is the Bayes model for the squared loss. We can now
decompose the expected risk. □

2.6.2 Decomposing the Expected Risk

The first step is to decompose the expected risk into the noise term and the excess risk. This
is achieved by introducing an f ∗(x) term similar to Definition 8.
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Lemma 2.1.
We can decompose the risk of the model into two terms: the noise and the excess risk.
Formally, we demonstrate the following equality holds

ED[R(f)] = Ex
[
(f(x;D)− f ∗(x))2

]
+ E(x,y)

[
(f ∗(x)− y)2

]
,

where the expectations are implicitly conditioned on D.

Proof. As the model is trained using the squared loss, we have

ED[R(f)] def= E(x,y)
[
(f(x;D)− y)2

]
.

We begin by introducing an f ∗(x), which gives us the following:

E(x,y)
[
(f(x;D)− y)2

]
= E(x,y)

{
([f(x;D)− f ∗(x)] + [f ∗(x)− y])2

}
.

Next, we expand the square and simplify the resulting expression to give us

Ex
[
(f(x;D)− f ∗(x))2

]
+ 2E(x,y)[(f(x;D)− f ∗(x))(f ∗(x)− y)] + E(x,y)

[
(f ∗(x)− y)2

]
.

Focusing on the middle term, we can push the expectation over y inwards, which leads to

Ex
[
(f(x;D)− f ∗(x))

(
f ∗(x)− Ey|x[y]

)]
,

this gives us f ∗(x)− Ey|x[y] = f ∗(x)− f ∗(x) = 0. Hence we can conclude that

ED[R(f)] = Ex
[
(f(x;D)− f ∗(x))2

]
︸ ︷︷ ︸

excess risk

+E(x,y)
[
(f ∗(x)− y)2

]
︸ ︷︷ ︸

noise

,

as desired. □

The second step involves breaking down the excess risk term, which we do by introducing f̄(x)
terms.

Lemma 2.2.
The excess risk can be decomposed into bias and variance terms. So, the following equality
holds

Ex
[
(f(x;D)− f ∗(x))2

]
= Ex

[(
f(x;D)− f̄(x)

)2
]

+ Ex

[(
f̄(x)− f ∗(x)

)2
]
. (2.15)
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Proof. First, we introduce f̄(x) terms to give us

Ex
[
(f(x;D)− f ∗(x))2

]
= Ex

{([
f(x;D)− f̄(x)

]
+
[
f̄(x)− f ∗(x)

])2
}

.

Next, we expand the square and simplify the resulting expectations; which gives

Ex

[(
f(x;D)− f̄(x)

)2
]

+ 2Ex
[(

f(x;D)− f̄(x)
)(

f̄(x)− f ∗(x)
)]

+ Ex

[(
f̄(x)− f ∗(x)

)2
]
.

If we focus on the middle term and push the expectation inwards, we have

Ex
[(

f(x;D)− f̄(x)
)(

f̄(x)− f ∗(x)
)]

= Ex
[(
ED[f(x;D)]− f̄(x)

)(
f̄(x)− f ∗(x)

)]
= Ex

[(
f̄(x)− f̄(x)

)(
f̄(x)− f ∗(x)

)]
= 0.

This yields the desired equality:

Ex
[
(f(x;D)− f ∗(x))2

]
= Ex

[(
f(x;D)− f̄(x)

)2
]

︸ ︷︷ ︸
variance

+Ex

[(
f̄(x)− f ∗(x)

)2
]

︸ ︷︷ ︸
bias

. □

Theorem 2.3 (The bias-variance decomposition of the squared loss).
The bias-variance decomposition of the squared loss is

ED[R(f)] = Ex

[(
f(x;D)− f̄(x)

)2
]

︸ ︷︷ ︸
variance

+Ex

[(
f̄(x)− f ∗(x)

)2
]

︸ ︷︷ ︸
bias

+E(x,y)
[
(f ∗(x)− y)2

]
︸ ︷︷ ︸

noise

.

Proof. This is a consequence of Lemmas 2.1 and 2.2. □

2.7 Bias, Variance and Noise

Bias measures the mismatch between the model and the underlying data distribution. It is
a form of systematic error and occurs when the underlying assumptions of the model do not
match the underlying data generation process. In the underfitting example of Figure 2.8, the
model has a high bias, as the linear model assumes an underlying linear relationship when it is
quadratic.

Variance is the variability in model predictions or the degree to which the model is susceptible
to small changes in the training data. In general, it is caused by highly complex models with
many parameters; this means the model is more flexible to fit the training data and can learn
a more complex mapping. However, instead of fitting the underlying distribution, it might fit
to the noise or small changes in the data set. We can connect this to the overfitting example



CHAPTER 2. SETTING THE SCENE 29

of Figure 2.8 — the model has a high variance. Instead of fitting to the polynomial, it fits to
the sample noise.

Noise is a form of irreducible error and is a by-product of the data collection process or the
underlying data set. Classic examples of noise are from signal processing, which tends to be
due to the sensor’s resolution or the sampling rate. However, noise can occur in other data sets.
Consider house price data; an example of noise is when you have two identical houses, and one
sells for more. In very noisy data, the underlying data generation process can be obscured and
is difficult to reduce. We can think of noise as the smallest possible risk achievable.

2.8 Why is the Decomposition Useful?

We have demonstrated that squared loss can be decomposed into bias, variance, and noise
terms. You might ask why this is useful. Each quantity can be estimated for a model, showing
us the expected risk’s sources and causes. Their relationship can then be used to diagnose
the cause of a model’s generalisation issues. If the variance is the biggest contribution to the
expected risk, this suggests the model is overfitting, so either the model complexity should be
reduced or regularisation should be added. If bias is the most significant contributor, the model
is likely too simple to capture the underlying distribution, so the model complexity should be
increased. The same is true for noise, but it suggests a problem with the data and that extra
processing may be needed.

2.9 Underfitting and Overfitting: Revisited

Geman et al. [36] demonstrated that the bias and variance decomposition is inextricably linked
to the concept of overfitting and underfitting. Overfitting and underfitting are formally defined
in terms of bias and variance.

Underfitting occurs when the bias is high because the model has insufficient flexibility to
model the underlying distribution properly.

Overfitting occurs when the variance is high, and the model has too much flexibility. There-
fore, it models the noise in the data, not the underlying distribution, and is overly sensitive to
the training data.

2.10 The Bias-Variance Tradeoff

The bias and variance are in tradeoff; as a model gets more complex, it has more flexibility
to model the underlying data generation process, so the bias decreases. However, as model
complexity increases, it becomes more sensitive to the initial training data set, so the variance
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increases. Usually, with increasing model complexity, the bias decreases monotonically, whereas
the variance increases monotonically. This gives the characteristic U-shaped risk curve, which
is demonstrated in Figure 2.7. The figure also demonstrates why it is called the bias-variance
tradeoff. It is necessary to add flexibility to the model, which increases the variance of the
model to reduce the model bias and minimise the expected risk of the model.

VarianceBias
Risk

Model Complexity

Figure 2.7: This image shows the monotonically decreasing bias, monotonically increasing variance
and the U-shaped risk curve. The bias-variance tradeoff aims to find a model complexity that minimises
the expected risk

2.11 Revisiting Polynomial Fitting

Figure 2.1 demonstrates that increasing the degree of the polynomial leads to overfitting and
decreasing it can lead to underfitting. We can decompose the expected risk of the model to
estimate the bias and variance of the model. Figure 2.8 plots all three values against the
polynomial’s degree, which measures the model complexity. This plot matches our intuitive
understanding and the results observed in Figure 2.1.
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Figure 2.8: The plot of the estimated bias, variance and expected risk for polynomial curve fitting.
(LEFT) Expected Risk. (CENTRE) Bias. (RIGHT) Variance.
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2.12 Reducing Bias and Variance

How can we reduce the bias or variance of a model? Table 2.1 gives general approaches to
reduce either a model’s bias or the variance. We shall cover these techniques, give empirical
results, and explain how and why these approaches work.

Reduce bias by... Reduce variance by...

• Use a more complex model • Use a simpler model
• More training samples • Apply a form of regularisation
• Use an ensemble method (boosting) • Use an ensemble method (bagging)

Table 2.1: Approaches to reduce the bias and the variance of a model.

2.13 Estimating Bias and Variance

To estimate the bias and variance of a model, we must approximate the expectation over D.
There are two approaches. The first involves partitioning D into k disjoint subsets, and the
second uses bootstrap sampling.

2.13.1 Data Set Partitioning

If D is partitioned into k disjoint subsets such that D = ⋃k
i=1D(i), the bias and variance of fD(i)

can be calculated by taking the expectation over D(i) estimates the bias and variance of the
model. Algorithm 1 describes this approach in more detail.

Algorithm 1 data set partitioning approach
Partition D into D1, . . . ,Dk

for i = 1, . . . , k do
Train fD(i) using D(i)

Calculate ŷi using evaluation set
Calculate expected risk, bias and variance from ŷ
return expected risk, bias, variance

2.13.2 Bootstrap Sampling

The second approach involves taking repeated bootstrap samples (sampling with replacement)
and then taking the expectation over them to estimate the bias and variance of the model.
Algorithm 2 describes this approach in more detail.
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Algorithm 2 Bootrap approach
for i = 1, . . . , k do
B ← boostrap(D)
Train fB using the bootstrap sample B
Calculate ŷi using evaluation set

Calculate expected risk, bias and variance from ŷ
return expected risk, bias, variance

2.14 Chapter Summary

This chapter briefly introduced supervised learning and defined the notion of a loss function
and training loss. We then introduced SLT and the empirical risk minimisation principle, which
gives us a formal mathematical framework to understand the behaviour of ML algorithms. Next,
we defined a model’s bias, variance, and noise and presented the bias-variance decomposition
for the squared loss. This is the classical theory to explain the model generalisation and
behaviour. We concluded by discussing how we can estimate the bias and variance of a model
and techniques to reduce a model’s bias or variance. In the next chapter, we generalise our
notion of loss functions and distances by introducing Bregman divergences and their generalised
bias-variance decomposition.
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Bregman Divergences

Chapter 2 discussed how loss functions can be seen as a measure of the distance between the
predicted and actual output. This chapter uses Bregman divergences [13] to define distance
formally. This leads to the generalised bias-variance decomposition for Bregman divergences;
this will be used to derive the decomposition of the cross-entropy loss. We shall begin by
exploring the squared loss.

3.1 Geometry of the Squared Loss

The following section introduces Bregman divergences by exploring a geometric interpretation
of the squared loss and has been adapted from Ried [65]. In Section 2.6, we derived the bias-
variance decomposition for the squared loss. The 1D squared loss can be generalised to Rn.
It is the squared Euclidean distance between two vectors: the prediction and the label. If we
consider the geometry of the squared loss, something interesting happens. Let ⟨x, y⟩ = ∑

i xiyi

be the inner product. The squared loss can be expressed as

∥x−y∥2 = ⟨x−y, x−y⟩ = ∥x∥2 − ∥y∥2 − ⟨2 y, x−y⟩,

by the linearity of the inner product. This formulation of the squared loss lends to a nice
geometric interpretation; 2 y is the derivative of ∥y∥2, and ∥y∥2 + ⟨2 y, x−y⟩ is the value of
the line tangent to ∥y∥2 evaluated at x. So, the squared loss is the difference between the
function f(x) = ∥x∥2 and the tangent at y evaluated at x. More formally

∥x−y∥2 = f(x)− (f(y) + ⟨∇f(y), x−y⟩)︸ ︷︷ ︸
tangent of f at y evaluated at x

. (3.1)

Figure 3.1 visualises the 1D case.
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f(x)

f(y)

Figure 3.1: A visualisation of the squared loss as a Bregman divergence. The curve ∥x∥2 is plotted
in black, the line tangent to f(y) is plotted in red, and the squared Euclidean distance is the length
of the line plotted in blue.

The squared loss must always be positive, a negative distance would not be sensible, so by
Equation (3.1), we have

f(x) ⩾ f(y) + ⟨∇f(y), x−y⟩ ∀x, y ∈ Rn,

which Boyd and Vandenberghe [12, p. 69] states is equivalent to saying f is a convex function
given it is sufficiently differentiable. This means we can derive a distance Df with similar
structure and properties to the squared loss by choosing a convex function f and defining

Df (x, y) def= f(x)− (f(y) + ⟨∇f(y), x−y⟩).

Any distance we define this way is a Bregman divergence, and the convexity of f guarantees
nonnegativity for all x, y ∈ Rn.

3.2 Bregman Divergences

We have motivated the study of Bregman divergences by exploring the squared loss. We now
give the formal definition.

Definition 11 (Bregman Divergence).
Let F : S → R be a strictly convex differentiable function, then the Bregman Divergence
derived from F is a function DF : S × S → R+ such that

DF (x, y) def= F (x)− (F (y) + ⟨∇F (y), x− y⟩)

Table 3.1 gives examples of common loss functions that are also Bregman divergences.
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Loss function Bregman Divergence DF (p, q) Generator F (p) Domain S

Squared loss ∥p−q∥2 ∥q∥2 p ∈ Rn

Poisson loss p

q
− ln p

q
− 1 − ln p p ∈ R+

KL Divergence
∑

i

pi log pi

qi

+
∑

i

pi +
∑

i

qi

∑
i

pi log pi p ∈ Rn
∆

Itakuru-Saito
∑

i

(
pi

qi

− log pi

qi

− 1
)

−
∑

i

log pi p ∈ Rn
+

Table 3.1: Examples of common loss functions as Bregman divergences. Source: [80]

3.3 The Generalised Bias-Variance Decomposition of
Bregman Divergences

Pfau [59] derived the generalised bias-variance decomposition for Bregman divergences; this
greatly simplifies decomposing the cross-entropy loss. We present the proof and use it to
decompose the squared loss and KL divergence.

Lemma 3.1 (Minimum Expected Bregman Divergence).
Let F : S → R be a strictly convex differentiable function and X be a random variable
on S. Then we have

(1) x∗ = arg minz DF [z ∥ X] if and only if ∇F (x∗) = E[∇F (X)]
(2) E[X] = arg minz DF [X ∥ z].

Proof. For x∗ to minimise the expected divergence, its gradient must be zero. The gradient
of the expected Bregman divergence taken over the second argument is given by

∇z E [DF [z ∥ X]] = ∇z E [F (z)− (F (X) + ⟨∇F (X), z −X⟩)]
= ∇zF (z)−∇z E [⟨∇F (X), z −X⟩]
= ∇zF (z)−∇z [⟨E[∇F (X)], z⟩]
= ∇zF (z)−∇E[F (X)] = 0.

The final step allows us to conclude ∇F (z) = ∇E[F (X)]. The intermediate steps are the
linearity of expectations and the independence of X and z. As F is strictly convex, x∗ is a
unique global minimum if it exists that satisfies this condition.
We now consider taking the expectation over the first argument. The gradient is

∇z E [DF [X ∥ z]] = ∇z E [F (X)− (F (z) + ⟨∇F (z), X − z⟩)]
= −∇F (z)−∇2F (z)E[X] +∇2F (z)z +∇F (z)
= −∇2F (z)E[X] +∇2F (z)z = 0.
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The final step yields ∇2F (z)E[X] = ∇2F (z)z, as F is strictly convex, its Hessian is positive
definite and invertible by the invertible matrix theorem [see 78]. We can conclude that
E[X] = z. □

Lemma 3.1 restates a key result of Bregman divergences: given a random vector, the expected
value minimises the Bregman divergence. This was first proven by Banerjee et al. [4]. From
Lemma 3.1, we can decompose the expected Bregman divergence over a random variable for
each element s ∈ S. This results in Theorem 3.2.

Theorem 3.2 (Decomposition of Expected Bregman Divergence).
Let F : S → R be a strictly convex differentiable function and X be a random variable
on S. For a value s ∈ S, the expected Bregman divergences have the following exact
decompositions.

(1) E [DF [s ∥ X]] = DF [s ∥ x∗] + E [DF [x∗ ∥ X]] where x∗ = arg minz DF [z ∥ X]
(2) E [DF [X ∥ s]] = DF [x∗ ∥ s]+E [DF [X ∥ x∗]] where x∗ = arg minz DF [X ∥ z] = E[X]

Proof. We begin with the expectation over the second argument. Applying Definition 11
gives

DF [s ∥ x∗] + E [DF [x∗ ∥ X]] = F (s)− F (x∗) + ⟨∇F (x∗), s− x∗⟩

+ E [F (x∗)− F (X) + ⟨∇F (X), x∗ −X⟩] .

As x∗ is a constant, it can be extracted from the expectation and cancelled with −F (x∗).
Applying Lemma 3.1 and moving the constants inside the expectation yields

E [F (s) + ⟨∇F (X), s− x∗⟩ − F (X) + ⟨∇F (X), x∗ −X⟩] .

As inner products are linear,

E [F (s)− F (X) + ⟨∇F (X), s− x∗ + x∗ −X⟩] = E [F (s)− F (X) + ⟨∇F (X), s−X⟩] ,

which is E [DF [s ∥ X]] as required.
We now consider the expectation over the first argument. Substituting in x∗ = E[X] and
apply Definition 11 gives

DF [E[X] ∥ s] + E [DF [X ∥ E[X]]] = F (E[X])− (F (s) + ⟨∇F (s),E[X]− s⟩)
+ E [F (X)− (F (E[X]) + ⟨∇F (E[X]), X − E[X]⟩)] .

Expectations are linear, so the expression can be further decomposed to

−(F (s) + ⟨∇F (s),E[X]− s⟩) + E [F (X)]− ⟨∇F (E[X]),E[X]− E[X]⟩.
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If an inner product has the form ⟨·, 0⟩ or ⟨0, ·⟩, then its value is also zero. Hence,
⟨∇F (E[X]),E[X]− E[X]⟩ is zero. Moving the expectation to the outside and taking ad-
vantage of the independence of X and s gives

E [F (X)− (F (s) + ⟨∇F (s), X − s⟩)] ,

which is E [DF (X ∥ s)] as required. □

Suppose that we want to predict a random variable Y ∈ S dependent on another variable
X ∈ R. We have the training set D = {(xi, yi)}N

i=1 of data samples drawn i.i.d. from the joint
distribution, so the task is to learn the function fD : R → S. If the loss function of the model
is the Bregman divergence defined from F , the expected loss can be decomposed exactly using
Theorem 3.3.

Theorem 3.3 (Generalised Bias-Variance Decomposition).
Let F : S → R be a strictly convex differentiable function, fD : R → S be the model
trained on D = {(xi, yi)}N

i=1, and Y be the random variable we predict from X. The
expected Bregman divergence of the data obeys the general bias-variance decomposition:

ED,Y [DF [Y ∥ fD(X)]]
= EY [DF [Y ∥ f ∗(X)]]︸ ︷︷ ︸

Noise

+ DF [f ∗(X) ∥ f̄(X)]︸ ︷︷ ︸
Bias

+ED[DF [f̄(X) ∥ fD(X)]]︸ ︷︷ ︸
Variance

where f ∗(X) = arg minz EY [DF [Y ∥ z]] = EY [Y ], f̄(X) = arg minz ED[DF [z ∥ fD(X)]]
and all expectations are implicitly conditioned on X.

Proof. This is an application of Theorem 3.2. The expectation ED,Y [DF [Y ∥ fD(X)]] can be
written as ED[EY [DF [Y ∥ fD(X)]]]. Applying Theorem 3.2 (1) and simplifying the resulting
expectation gives

ED[EY [DF [Y ∥ f ∗(X)]] + DF [f ∗(X) ∥ fD(X)]].

The right-hand term can be further reduced by using Theorem 3.2 (2) which yields

EY [DF [Y ∥ f ∗(X)]] + ED[DF [f ∗(X) ∥ f̄(X)] + DF [f̄(X) ∥ fD(X)]]].

Simplifying the expectation by extracting constants yields

EY [DF [Y ∥ f ∗(X)]]︸ ︷︷ ︸
Noise

+ DF [f ∗(X) ∥ f̄(X)]︸ ︷︷ ︸
Bias

+ED[DF [f̄(X) ∥ fD(X)]]︸ ︷︷ ︸
V ariance

,

which is the desired decomposition. □

Theorem 3.3 demonstrates the power of Bregman divergences. As long as we formulate a loss
function to be a Bregman divergence, we know its exact bias-variance decomposition. To give
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a concrete example, we again look at the squared loss.

Example (Squared loss decomposition). In Section 2.6, we gave a possible derivation of the
bias-variance decomposition of the squared loss. Section 3.1 demonstrated that the squared
loss is also a Bregman divergence, so we can restate Theorem 2.3 using Theorem 3.3. We
shall begin with f ∗(x), which is Ey| x[Y ], which in turn is just Definition 10. Next is f̄(x), by
Lemma 3.1 we have ∇F (f̄(x)) = ED [∇F (fD)], which implies that f̄ = ED[fD]. This matches
Theorem 2.3.

3.4 The KL Divergence

In classification, it is common to have a probability distribution over all possible classes in the
form of a probability vector. This means the loss function measures the ‘distance’ between
the true probability distribution and the predicted distribution. Chapter 2 introduced the
cross entropy loss function, which is commonly used for classification problems and can be
considered a measure of the distance between two distributions. It would be nice if cross-
entropy is a Bregman divergence. Unfortunately, it is not. Instead, we exploit its connection
to KL divergence [48].

3.4.1 Motivating the KL Divergence

Consider the probability distributions of two coins C1 and C2 that follow the probability dis-
tributions given in Table 3.2.

Pr(Ci = c) H T

C1 p1 p2
C2 q1 q2

Table 3.2: Distribution of C1 and C2

Say we want to measure the distance between the probability distribution of two coins. One
way is to measure how hard it is to distinguish the distribution, or for a given sequence of
events S drawn from C1, how similar is the likelihood given each distribution. This can be
expressed as

distance = Pr(S|C1)
Pr(S|C2)

.

Given a sequence of N independent coin flips that contain NH heads and NT tails, the log
distance (normalised to the sample size) is

log
p

NH/N
1 p

NT /N
2

q
NH/N
1 q

NT /N
2

 = log
(

pNH
1 pNT

2

qNH
1 qNT

2

) 1
N

.
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Applying basic log rules yields

NH

N
log p1

q1
+ NT

N
log p2

q2
. (3.2)

As S is drawn from C1, NH

N
→ p1 and NT

N
→ p2 as N →∞. This means Equation (3.2) can be

expressed as
p1 log p1

q1
+ p2 log p2

q2
. (3.3)

Equation (3.3) defines the KL divergence between C1 and C2. This is a simple example but
can be generalised to any probability distribution.

3.4.2 The KL Divergence and Negative Entropy

Definition 12 (The Discrete KL Divergence).
Let p and q be discrete probability distributions over a probability space X , the Kullback-
Leibler (KL) divergence denoted DKL(p ∥ q) is defined as

DKL(p ∥ q) def=
∑
x∈X

p(x) log p(x)
q(x) .

Like cross-entropy, it can be expressed as an expectation. It is the expectation over p of the
difference of the logs of the distributions or

Ep[log p− log q].

This is similar to cross-entropy. Given a set of observations drawn from p, the cross entropy is
the reciprocal of the likelihood of observing the same observations given by q. This suggests a
connection between the two quantities that will be formally defined later in this chapter.

Table 3.1 stated that the KL divergence was the Bregman divergence generated by negative
entropy. We now prove this statement.

Theorem 3.4 (KL Divergence and Negative Entropy).
The KL divergence is a Bregman divergence where F is the negative entropy of the dis-
tribution or

F (p) =
∑
x∈X

p(x) log p(x).

Proof. We begin by finding ∇F (p), applying the chain rule we get

∇F (p) =
∑
x∈X

log p(x) + 1.
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Then we have

DF [p ∥ q] = F (p)− (F (q) + ⟨∇F (q), p− q⟩)

=
∑
x∈X

p(x) log p(x)−
∑
x∈X

q(x) log q(x)−
〈∑

x∈X
log q(x) + 1, p− q

〉

=
∑
x∈X

p(x) log p(x)−
∑
x∈X

q(x) log q(x)−
∑
x∈X

p(x) log q(x)

−
∑
x∈X

p(x) +
∑
x∈X

q(x) log q(x) +
∑
x∈X

q(x)

=
∑
x∈X

p(x) log p(x)−
∑
x∈X

p(x) log q(x)−
∑
x∈X

p(x) +
∑
x∈X

q(x) (∗)

Equation (∗) is the generalised KL divergence, but as p and q are probability distributions,
they must sum to one. This gives us

∑
x∈X

p(x) log p(x)−
∑
x∈X

p(x) log q(x) =
∑
x∈X

p(x) log p(x)
q(x) = DKL(p ∥ q). □

Heskes [39] first derived the bias-variance decomposition for the KL divergence; however, this
proof is somewhat unintuitive and involved. Instead, we will use the generalised bias-variance
decomposition for Bregman divergences.

3.5 Decomposing the KL Divergence

Consider a K-class classification task with the training set {(xi, ci)}N
i=1 drawn i.i.d. from the

joint distribution of the random variables X and Y , where xi ∈ Rd. Let π0 ∈ RK
∆ be the one-hot

encoding of the ground truth labels and π(x;D) ∈ RK
∆ , denoted π, the classifier’s prediction

and is a random variable dependent on X and D. If the model’s loss function is DKL(π0 ∥ π),
then the expected loss can be exactly decomposed using Theorem 3.3.

We first define both f ∗(X) and f̄(X) as required by Theorem 3.3. Beginning with f ∗(X),
denoted π∗, which is simply EY [π0] . Next, f̄(X) or the expected classifier denoted π̄.

Lemma 3.5 (The Expected Classifier).
Given a probability vector π, the expected classifier π̄ is the probability vector such that
π̄ = arg minz E[z ∥ π] and the vector has entries

π̄[c] = expE[ln π[c]]∑K
c=1 expE[ln π[c]]

,

where all expectations are implicitly over D and X.
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Proof. By Lemma 3.1, ∇F (π̄) = E[∇F (π)]. Differentiating F (using the natural logarithm)
and tidying up the resulting summation gives

K∑
c=1

ln π̄[c] =
K∑

c=1
E[ln π[c]], (3.4)

where ln π̄[c] ∝ E[ln π[c]] or π̄[c] ∝ expE[ln π[c]]. As π̄ is a probability distribution, we must
normalise it so that it sums to one; this can be done by dividing each entry by the sum of the
vector entries. This gives

π̄[c] = expE[ln π[c]]∑K
c=1 expE[ln π[c]]

as required and completes the proof. □

We can now derive the exact decomposition of the KL divergence.

Theorem 3.6 (The Bias-Variance Decomposition of the KL Divergence).
Let π0 ∈ RK

∆ is the one-hot encoded ground truth and π ∈ RK
∆ is the predicted distribution

and a random variable dependent on X and D. The bias-variance decomposition of the
KL divergence is

E[DKL(π0 ∥ π)] = EY [DKL[π0 ∥ π∗]]︸ ︷︷ ︸
Noise

+ DKL[π∗ ∥ π̄]︸ ︷︷ ︸
Bias

+ED[DKL[π̄ ∥ π]]︸ ︷︷ ︸
V ariance

,

where π∗ = EY [π0] and π̄ is the expected classifier.

Proof. This is a consequence of Theorem 3.3 and Lemma 3.5. □

3.6 The Cross-Entropy Connection

Chapter 2 introduced cross-entropy and gave its definition. Manipulating the definition gives

H(p, q) def= −
∑
x∈X

p(x) log q(x)

= −
∑
x∈X

p(x) log q(x) +
∑
x∈X

p(x) log p(x)−
∑
x∈X

p(x) log p(x)

=
∑
x∈X

p(x) log p(x)−
∑
x∈X

p(x) log q(x)︸ ︷︷ ︸
DKL(p∥q)

−
∑
x∈X

p(x) log p(x)︸ ︷︷ ︸
H(p)

= DKL(p ∥ q) + H(p).

(3.5)

So, the cross entropy of p and q can be expressed as the sum KL divergence of p and p and
another term, called the entropy of p and is denoted H(p). We can now decompose the cross-
entropy loss.
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Theorem 3.7 (The Bias-Variance Decomposition of the Cross-Entropy Loss).
The bias-variance decomposition for cross-entropy loss is

E[H(π0, π)] = EY [DKL[π0 ∥ π∗]]︸ ︷︷ ︸
Noise

+ DKL[π∗ ∥ π̄]︸ ︷︷ ︸
Bias

+ED[DKL[π̄ ∥ π]]︸ ︷︷ ︸
V ariance

,

where π∗ = EY [π0] and π̄ is the expected classifier.

Proof. Equation (3.5) and the expectation algebra rules gives

E[H(π0, π)] = E[H(π0) + DKL(π0 ∥ π)] = E[H(π0)] + E[DKL(π0 ∥ π)].

Consider E[H(π0)], as π0 is a one-hot vector, so its elements are either 1 or 0. This means
H(π0) and E[H(π0)] will be 0, so E[H(π0, π)] = E[DKL(π0 ∥ π)]. Applying Theorem 3.6 gives
the desired decomposition and completes the proof. □

3.7 Chapter Summary

This chapter introduced Bregman divergences. We began by demonstrating that the squared
loss was a Bregman divergence. Next, we presented generalised bias-variance decomposition for
Bregman divergence and demonstrated that the bias-variance decomposition of the squared loss
was just a special case. Then we moved on to the KL-Divergence and exploited its connection
to cross-entropy to decompose the cross-entropy loss. We now have the decomposition for both
the squared and cross-entropy losses. The following two chapters use these decompositions to
explore the behaviour of two standard machine learning techniques: regularisation and ensemble
methods. We begin with regularisation in the next chapter.



CHAPTER 4

Regularisation

For models to generalise well, we need to prevent overfitting. This is especially important
as current machine learning practice focuses on large complex models. We want the simplest
possible model with sufficient generalisation performance to do this. Or, given a set of models
with the same expected risk, we want the simplest. This is achieved by penalising overly
complex models and is known as regularisation.

Regularisation approaches can be classified in many ways, but for the sake of this discussion,
we will group regularisation approaches into two key types:

• Explicit regularisation is when a regularisation term is explicitly added to the objective
function, usually as a penalty term.

• Implicit regularisation is all other forms of regularisation and tends to be more common
in deep learning. Examples of this are early stopping [61, 82] during training if we detect
the model starting to overfit and gradient-based optimisation method such as stochastic
gradient descent (SGD)1 [6, 23, 30, 64, 71].

This chapter focuses on explicit regularisation and its impact on the bias and variance trade-off.

4.1 Explicit Regularisation

Formally, explicit regularisation adapts the objective function to have the form

O(w) = ℓ(y, f(x; w)) + λR(w), (4.1)

where w are the model parameters. The term R(w) is the regulariser or regularisation term and
measures the complexity of the model, penalising highly complex models. The regularisation

1Deep learning theory literature often refers to this as implicit bias or algorithmic bias.
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parameter λ measures the strength of the regularisation. How do we define the complexity of
a model?

Consider a simple linear model where the variable Y is modelled by weighted linear combinations
of the input features or

Y ≈
∑

i

wi x̃i = w⊺ x̃.

The model’s complexity can be defined with respect to the entries of w. If wi is zero, the
regressor represented by x̃i is not involved in the model. Very naïvely, the sum of the model
weights is inversely related to the model complexity; the more variables a model involves,
the more flexibility the model has and a greater tendency to overfit. There are three main
formulations of R(w):

• Least Absolute Shrinkage and Selection Operator (LASSO) regularisation or L1 regular-
isation is where R(w) = ∑

i wi.

• Ridge regularisation or L2 regularisation is where R(w) = ∥w∥2
2 = w⊺ w.

• Elastic-net regularisation [84], where both L1 and L2 regularisation terms are used.

4.2 Regularisation and Variance

Regularisation reduces the risk of overfitting by penalising overly complex or flexible models,
but how does this relate to the bias-variance tradeoff? Reducing model flexibility will reduce
the variance model, and as a side effect, the bias will increase. So regularisation trades variance
for bias. We demonstrate the effect of regularisation by estimating the bias and variance of
different models: the first is a linear classifier using cross-entropy loss, and the second is a ridge
regression task. Finally, we explore why regularisation works by considering regularisation as
a constrained optimisation problem.

4.2.1 Cross Entropy Demonstration

For this demonstration, logistic regression using an L2-penalty term was trained on the IRIS
data set [29]. The expected risk was decomposed, and the inverse regularisation strength
parameter2 C was varied. To take the expectation over D, we performed an 80/20 train-test
split and the training set was partitioned into five disjoint subsets.

Figure 4.1 shows the experiment results and that these results match what we expect; the
expected risk has a U shape, a monotonically decreasing variance, and an increasing bias
with increasing regularisation. As regularisation strength increases, model flexibility decreases,

2Due to scikit-learn’s [57] implementation of logistic regression, as C → 0+ the stronger the
regularisation. See: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html


CHAPTER 4. REGULARISATION 45

0.000 0.001 0.002 0.003
C−1

2.30

2.35

2.40

2.45

2.50

2.55
Ex

pe
ct

ed
 R

isk
×10−2

Expected risk

0.000 0.001 0.002 0.003
C−1

0.4

0.6

0.8

1.0

1.2

1.4

Bi
as

×10−2

Bias

0.000 0.001 0.002 0.003
C−1

1.00

1.25

1.50

1.75

2.00

2.25

Va
ria

nc
e

×10−2

Variance

Figure 4.1: Bias-variance decomposition for L2 regularised logistic regression on the IRIS data set.
(LEFT) Expected risk. (CENTRE) Bias. (RIGHT) Variance.

causing variance to fall and bias to increase. The ideal regularisation strength C−1 ≈ 1.25×10−3

(C ≈ 800), which is a minimal amount of regularisation. We will now move on to the linear
regression demonstration.

4.2.2 Ridge Regression Demonstration

Combining an L2 regulariser with a linear model using the squared loss gives ridge regression.
The bias and variance were estimated using a similar approach for a ridge regression model for
the California housing data set [42]. Figure 4.2 shows the results of the experiments and that
they broadly match our expected results, as we have a U-shaped risk curve and the variance
monotonically decreases with increasing regularisation and the optimal amount of regularisation
is λ ≈ 150.
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Figure 4.2: Bias-variance decomposition for ridge regression performed on the California housing
data set. (LEFT) Expected Risk. (CENTRE) Bias. (RIGHT) Variance.

So what is going on? The variance is the easiest of the two to explain. Increasing the regu-
larisation constrains the model and reduces its flexibility, so it will not be as sensitive to the
underlying training data, and the variance decreases. However, the behaviour of the bias is
a bit strange. The model becomes simpler with stronger regularisation, so the bias should
increase as the amount of systematic error between the underlying generation process and the
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model increases. This is not the case in Figure 4.2. Instead of a monotonically increasing
bias, we have a U shape. A linear model is a poor choice for this particular data set, so there
is a high systematic error at all points. Regularisation decreases the model’s expected risk
due to the ridge regression’s statistical properties. For any linear regression task, there always
exists a regularisation constant λ > 0 with a lower squared loss than a non-regularised linear
regression [28, 73].

4.3 Why Does Regularisation Work?

Equation (4.1) gives the general formula for explicit regularisation. We can connect it to
the optimisation problem being solved. The regularisation term is a Lagrange multiplier3, so
Equation (4.1) can be expressed as the following optimisation problem:

minimise ℓ(y, f(x; w))
subject to R(w) ⩽ c

Returning to the function spaces considered and visualised in Chapter 2, the regularisation
term restricts the model family F to a new family R ⊂ F , which satisfies the constrained
optimisation problem. The model learnt will be simpler and have lower complexity, causing an
increase in bias and a decrease in variance.

Figure 4.3 visualises the effect of regularisation. The function spaces F and R are added to
the diagram to give a general notion of their size. As the regularisation strength increases, the
function space R becomes smaller and further constrains the model, causing the model bias to
continue to increase and the variance to continue to decrease.



Increasing Regularisation



Figure 4.3: Visual demonstration of the effect of regularisation where the bullseye is the true value,
the star is the cluster centroid, and each dot is a possible model output.

3This is a way to constrain the optimisation problem. See Boyd and Vandenberghe [12, Chapter 5] for more
details.
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4.4 Chapter Summary

In this chapter, we discussed regularisation through the lens of the bias-variance tradeoff. We
provided empirical evidence as to the behaviour of the regularised models using both the squared
and cross-entropy loss. We showed that as the amount of regularisation increases, the variance
decreases. We concluded by providing a theoretical underpinning to the empirical results by
exploring the constrained optimisation problem generated, which we connected back to SLT.
In the next chapter, we discuss how we can use ensemble methods to combine models.



CHAPTER 5

Ensemble Methods

The ‘wisdom of the crowd’ is the idea that a diverse set of opinions are better than one. This
idea is common throughout our society, from our parliamentary democracy to the jury system
used in criminal trials. A famous example of this, especially among statisticians, is Francis
Galton’s 1907 paper published in Nature [35], in which he recorded all the guesses of a cow’s
weight people made in a county fair competition. He found that the median estimate had an
error of only 1%, and the mean estimate was the ox’s weight. Ensemble methods aims to apply
similar strategies to ML algorithms.

Instead of training a single model, we train a committee or ensemble of models. Each test point
is fed into each ensemble member, and the outputs of all the models are combined. Ensemble
members may predict real values for regression tasks, an output class, or a probability for
classification tasks. These outputs must be merged somehow, with possible approaches being
averaging, voting, or another probabilistic method. The underlying principle is every model
will make some errors, but if we have multiple versions of the same model, each model makes
different errors. By combining all these models’ predictions the errors will cancel out.

5.1 Why Do We Combine Models?

We shall first deal with regression tasks or combining real values. Jensen’s inequality states
that for any convex function ϕ with a set of M reals x1, x2, . . . xM in the domain of ϕ we have

ϕ

(
M∑

i=1
aixi

)
⩽

M∑
i=1

aiϕ(xi), (5.1)

where ∑i ai = 1. We can contextualise this better if we connect this back to Galton’s ex-
periment. Let xi be the guesses of the cow’s weight and y the cow’s weight. If we choose
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ϕ(x) = (x− y)2, and assume ai = 1
M

for all i by Equation (5.1) we have

(x̄− y)2 ⩽
1

M

M∑
i=1

(xi − y)2. (5.2)

Another way to express this is that the squared error of the average estimate is less than the
average squared error over all predictions. We can quantify how much better it is. By adding
and subtracting a x̄ inside the square on the right-hand side of Equation (5.2) and expanding
the resulting expression, we get the following.

(x̄− y)2 = 1
M

M∑
i=1

(xi − y)2 − 1
M

(xi − x̄)2. (5.3)

In ensemble learning, this is known as the ambiguity decomposition and was first introduced by
Krogh and Vedelsby [47].

For classification tasks majority voting is used, can we quantify the error we expect our model
to get? If we have M independent voters, each with an error rate of ϵ, the number of errors K

follows a Binomial distribution such that K ∼ B(M, ϵ). This gives us

pK(k) = Pr(K = k) =
(

M

k

)
ϵk(1− ϵ)M−k.

A vote error only occurs if a majority of the ensemble members are in error, so we have

Pr(vote error) =
∑

k⩾⌈M+1
2 ⌉

pK(k) = 1− FK

(⌈
M + 1

2

⌉
− 1

)
.

Figure 5.1 plots this probability against the ensemble size, we can see how the probability of
an ensemble error changes based on the value of M . If each model has only a 1% error rate,
we can find that the chance of an ensemble error is almost surely zero if M ⩾ 10, so the more
classifiers we include in our ensemble, the better. Importantly, this only occurs if each classifier
is independent and has the same constant error rate.

We now understand theoretically why combining model outputs is beneficial, but how do we do
this? There are two key approaches: the first is using a parallel construction where we split the
data set into several training sets and train a model on each, and the second is to use sequential
construction where the model is trained to correct the errors of another model. We shall look
at bagging, a parallel construction method, and boosting, a sequential construction method.
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Figure 5.1: Effect on increasing the ensemble size on the probability of an ensemble error, we can
see that as we increase the value of M , the probability of an ensemble error decreases. Importantly
this trend only holds if the classifiers are independent.

5.2 Bagging

Breiman [14] introduced the meta-algorithm bagging or bootstrap aggregating for ensemble learn-
ing, which is the classic method for parallel ensembles. The idea is to take multiple bootstrap
samples from the original training data set and use this to train a series of models. As boot-
strapping gives different training sets, these differences are used to train a model and create
a diverse ensemble of models. The models’ outputs are combined using majority voting for
classification problems or averaging for regression tasks. Algorithm 3 gives the pseudocode for
a general bagging approach.

Algorithm 3 Bagging
Require: Training samples + labels D = {(xi, yi)}n

i=1, number of models M
function Bagging(D, M)

H ← ∅
for i = 1, . . . , M do
D′ ← bootstrap sample generated from D
hi ← model trained using D′

H ← H ∪ {hi}
return H

To demonstrate the effect of bagging as the ensemble size increases, bagging is performed on the
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MNIST data set [49]. Figure 5.2 gives the classification error as a function of the ensemble size
when bagging decision trees and Naïve Bayes classifiers. It is clear that increasing the number
of decision trees in the ensemble causes the classification error to decrease, and it seems to level
off at around 5%, which is much higher than under 1% Figure 5.1 suggests.
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Figure 5.2: Example of bagging classifiers performed on the MNIST data set (50 bootstrap trials).
(LEFT) Bagged decision tree classifiers. (RIGHT) Bagged na ive Bayes classifiers.

5.2.1 Analysing Bagging

Training data is being thrown away during the bagging process. Could this cause the mismatch
between the theoretical value and the observed classification error? Let us consider the boot-
strapping process on Dn in more detail. Since there are n training samples, each is selected
with probability 1

n
and not selected with probability 1 − 1

n
. The bootstrap is of size n, so the

chance an item is in the bootstrap sample is 1−
(
1− 1

n

)n
. We can also consider what happens

when the training data set becomes larger; the value tends to be around 0.632 and can be
derived by taking the following limit.

lim
n→∞

{
1−

(
1− 1

n

)n}
= 1− e−1 ≈ 0.632

This means that around 36.8% of the data will be excluded from a single bootstrap, but this
doesn’t tell the whole story.

During the bagging process, M bootstrap samples are taken. This means that each training
sample has a 36.8% chance of being excluded from a single model and only a 0.368M chance
of being excluded from the entire ensemble. This probability decreases very quickly as the
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number of ensembles in the model increases, and when M = 10, there is less than a 1% chance
an individual training sample is excluded.

As soon as the ensemble is reasonably large, all available training samples will almost certainly
be considered. This is not the cause of the observed underperformance. What are the ne-
cessary conditions for the asymptotic behaviour in Figure 5.1? The key condition is model
independence, so are the bagged decision classifiers independent? One way to measure the
dependency is by plotting the mutual information [68] between the two classifiers, which is
plotted in Figure 5.3.
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Figure 5.3: Dependency between bagged classifiers trained on MNIST. (LEFT) Bagged decision
tree classifier. (RIGHT) Naïve Bayes classifier.

Looking at Figure 5.3, every single classifier depends on at least one other; this means the
independent classifier assumption is completely invalid for the bagging ensembles presented
and the theoretical results in Figure 5.1 is unattainable. Looking at the right sub-figure, there
is even more correlation between models. This is because Naïve Bayes is a much more restricted
model class than the class of decision tree classifiers or that it is a ‘high bias’ model. Thus, the
models learnt are correlated together and often very similar. This is the real cause of the sub-
optimal performance of both the bagged decision tree and bagged Naïve Bayes classifiers. Very
similar models will make the same errors and will not cancel out. To improve this performance,
we must find a way to increase the ‘diversity’ of the ensemble members. A possible way to do
this for decision trees is to introduce a random or stochastic element to constructing the trees.
The random forest algorithm is a way to do this.

5.2.2 Random Forest

Breiman [16] proposed the random forest algorithm, an ensemble method for decision trees,
that improves classical bagging strategies by introducing an element of randomness into the
construction of the decision tree. Randomness is introduced in two ways: (1) bootstrap samples
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(bagging) are used to generate the training examples for each model, and (2) a random subset
of the features are used to perform the splitting. Algorithm 4 outlines the pseudocode for
generating a random forest ensemble.

Algorithm 4 Random Forest
function RandomForest(D, features)

H ← ∅
for i = 1, . . . , M do
D′ ← bootstrap sample from D
hi ← GenerateRandomTree(D′, F )

return H
function GenerateRandomTree(D′, F )

for all split point do
Choose fraction K of the remaining features
Split on the best feature of those selected

return generated tree

Generally, we set K =
⌈√

d
⌉

where d is the number of input features, as this forces the tree
to split more randomly. This randomness forces the ensemble members to be more diverse. It
means that the errors of each member are likely to cancel out, leading to better classification
performance than bagging decision tree classifiers.

Figure 5.4 gives the performance of a random forest of up to 50 trees on MNIST. Random forest
outperforms simple bagging strategies on decision trees — the test error decreases to around
3%, which is lower than the 5% obtained by bagging decision trees and almost five times
lower than bagged naïve bayes. The dependency heat map demonstrates why this occurs. The
random forest classifiers are much less correlated, meaning the ensembled classifiers are much
more different, and their errors are much more likely to cancel out. This observation raises an
interesting point:

More diverse ensembles perform better.

This idea will be explored more formally in Section 5.4.

5.3 Boosting

The second class of ensemble methods are sequential construction methods — where each clas-
sifier aims to correct the errors of the proceeding model. This approach is known as ‘boosting’.

Boosting begins with a probability distribution defined over the training samples and indicates
the relative weight each training sample should be given. At each step, a new classifier is
trained, and if the training sample is predicted correctly or incorrectly is recorded. If the
model is correct, the training sample’s weight is decreased. For incorrect training samples, the
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Figure 5.4: Random forest ensemble (M ⩽ 50) trained on the MNIST data set (100 bootstrap
trials). (LEFT) Test error as the number of classifiers increased. (RIGHT) Dependency between
the trained classifiers (M = 50).

weight is increased. This causes the next model to focus on those training samples that the
proceeding model classified incorrectly.

Boosting is unique in the history of machine learning. It is one of the few models predicted to
exist before the actual algorithm was created. In 1989, Kearns and Valiant [41] asked ‘Can a set
of weak learners create a single strong learner?’ where a weak learner is a classifier that performs
slightly better than random. Freund [31] and Schapire [67] demonstrated the answer was yes
by developing initial versions of boosting as a constructive proof to answer the question Kearns
and Valiant proposed. Freund and Schapire [32, 33] improved upon these initial approaches by
introducing the adaptive boosting algorithm or AdaBoost. This is one of the most widely used
boosting algorithms since its inception in 1995. Breiman [14] stated that ‘AdaBoost with trees
is best off-the-shelf classifier in the world’. Algorithm 5 gives the pseudocode for the AdaBoost
algorithm.

Algorithm 5 AdaBoost
function AdaBoost

Initialise probability distribution over the training set, P1(i) = 1
n

for all i ⩽ n
for t = 1, . . . M do

Build classifier ht using Pt(i)
αt ← 1

2 ln
(

1−ϵt

ϵt

)
for all i ⩽ n do

Pt+1(i)← Pt(i) exp(−αtyiht(xi))
Pt+1 ← Pt+1/Zt

function AdaBoostPredict(x)
return sign

(∑M
t=1 αtht(x)

)



CHAPTER 5. ENSEMBLE METHODS 55

5.4 Why Do Ensemble Methods Work Well?

We have discussed the two main ensemble learning approaches and suggested that ensemble
diversity is essential. Bagging creates a diverse ensemble by providing different training samples
for each model. Boosting does this by forcing each model to become more accurate where the
previous model was not. How do we quantify diversity and do we have a unified theory to
explain why ensembles work and their connection to diversity? This was regarded as the holy
grail of ensemble theory research, and only recently a possible solution was proposed by Wood
et al. [80].

Krogh and Vedelsby [47] were the first to try it. They introduced the ambiguity decomposition
for the squared loss, which we saw in Equation (5.3). More formally, we define it as follows.

Definition 13 (Ambiguity decomposition of the squared loss).
Given an ensemble of classifiers q = {qi}M

n=1 where q̄ = 1
M

∑M
i=1 qi, the ambiguity decom-

position for the set of classifiers is

(q̄(xi)− yi)2 = 1
M

n∑
i

(qi(xi)− yi)2

︸ ︷︷ ︸
average loss

− 1
M

n∑
i

(qi(xi)− q̄(xi))2

︸ ︷︷ ︸
ambiguity

.

This demonstrates that the ensemble members’ ambiguity or diversity has the effect of reducing
the ensemble loss. The trick to taking this further is to notice that Definition 13 is a special
case of the bias-variance decomposition.

5.4.1 Bias-Variance-Diversity Decomposition

Wood et al. [80] propose the ‘double decomposition’ trick which leads to the bias-variance-
diversity decomposition. The general structure of the decomposition is given in Figure 5.5 and
involves performing two steps of the bias-variance decomposition.

ED{ensemble loss}

ED{average loss

bias + variance

− ambiguity}

− diversity

Figure 5.5: The double decomposition trick.

Let us begin by (again) considering the squared loss. We shall decompose the expected ensemble
loss

ED
[
(q̄ − y)2

]
(5.4)
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using this double descent trick. We first apply Definition 13 to Equation (5.4) to get

ED

[
1

M

n∑
i

(qi−y)2 − 1
M

n∑
i

(qi−q̄)2
]
. (5.5)

Tidying up Equation (5.5) by pushing the expectations inwards gives

1
M

M∑
i=1

ED
[
(qi−y)2

]
− ED

[
1

M

M∑
i=1

(qi−q̄)2
]
. (5.6)

Applying Theorem 2.3 to Equation (5.6) yields

1
M

M∑
i=1

[
(ED[qi]− y)2 + ED

[
(qi−ED[qi])

2
]]
− ED

[
1

M

M∑
i=1

(qi−q̄)2
]
. (5.7)

Distributing the summations over Equation (5.7) gives the bias-variance-diversity decomposi-
tion of the squared loss:

1
M

M∑
i=1

(ED[qi]− y)2

︸ ︷︷ ︸
Average bias

+ 1
M

M∑
i=1

ED[(qi)− ED[qi]]
2

︸ ︷︷ ︸
Average variance

−ED

[
1

M

M∑
i=1

(qi−q̄)2
]

︸ ︷︷ ︸
Diversity

.

So we can connect ensemble performance back to the bias-variance decomposition, which is
helpful as it provides a framework to reason about model ensembles in a formalised way. This
connection makes sense as a single model has the bias-variance decomposition, so it stands
to reason that you can connect this to ensemble models. As there are multiple models, an
additional term must give the effect of the different models. A similar decomposition can be
done for Bregman divergence losses [see 80, Theorem 4]. The proof of this is irrelevant to the
current discussion. For completeness, the generalised bias-variance-diversity decomposition is
reproduced, as we will refer back to it later.

Theorem 5.1 (Wood et al. [80, Theorem 2]).
Consider a set of models {q1, . . . , qM}, evaluated by a loss function ℓ. Assuming we have
a bias-variance decomposition similar to Definition 1 of Wood et al. [80], the following
bias-variance-diversity decomposition holds.

ED[ℓ(y, q̄)] = 1
M

M∑
i=1

ℓ(y, q∗
i )︸ ︷︷ ︸

average bias

+ 1
M

M∑
i=1

ED[V(q∗
i , qi)]︸ ︷︷ ︸

average variance

−ED

[
1

M

M∑
i=1

V(q̄, qi)
]

︸ ︷︷ ︸
diversity

,

where q∗ def= arg minz ED[V(z, q)] and q̄ def= arg minz
1

M

∑M
i=1 V(z, qi).

Theorem 5.1 assumes that the loss function can be decomposed into bias and variance terms. A
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notable exception is the 0-1 loss. There is no bias-variance decomposition for the 0-1 loss [80,
Theorem 9], so a bias-variance-diversity decomposition cannot exist. Hastie and James [37]
argued there is no need to consider the bias and variance of the 0-1 loss. Instead, we only need
to focus on its effect on the expected loss. This idea can be used to derive the bias-variance-
diversity effect decomposition [80, Theorem 13], which describes the effect of each term on the
expected loss of the ensemble.

5.4.2 The Effect of Ensemble Diversity

Bagging

Figure 5.6 shows the average bias, variance and diversity of the random forest and bagged
decision tree ensembles as the number of classifiers increases to 50. Both ensembles exhibit a
similar behaviour. As the number of ensembles increases, the expected ensemble loss decreases
and, at the same time, the diversity of the model increases. Due to randomness in tree con-
struction, the random forest has greater diversity as the ensemble size increases. This, in turn,
is reflected in the lower expected risk of the random forest compared to the bagged decision
trees.

0 6 12 18 24 30 36 42 48
Ensemble size

0.0

0.1

0.2

0.3

0.4

0.5
Bagged Decision Trees

expected risk
average bias-effect
average variance-effect
diversity-effect

0 6 12 18 24 30 36 42 48
Ensemble size

Random Forest

expected risk
average bias-effect
average variance-effect
diversity-effect

Figure 5.6: Bias-Variance-Decomposition of ensemble classifiers on MNIST (50 bootstrap trials).
(LEFT) Bagged decision tree classifiers. (RIGHT) Random forest classifier.

If we look closely, it seems as if the diversity of the model levels off at the average variance.
This results from the law of large numbers applied to the diversity term. As a consequence,
the diversity of the model converges on the average variance as the ensemble size increases. So
the effect of the diversity is to counteract or cancel out the variance of the ensembled model;
this is a profound insight, as this allows us to conclude more general ideas about the effect of
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bagging.

Breiman [14] stated that ‘a critical factor in whether bagging will improve accuracy is the
stability of the procedure for constructing [the ensembled model]’. Breiman [15] explored this
idea of stability further and attempted to classify known algorithms. In this context, a model
is unstable if a small change in the training set can lead to a significant difference in the trained
model. Another way of saying this is that bagging works best with high variance models such
as deep decision trees or large neural networks as they are unstable and would work poorly with
very stable models such as a k-NN classifier with 0-1 loss [26] and support vector machines [11].

This can be connected back to the bias-variance-diversity decomposition. During the bagging
process, multiple bootstrap samples are taken from the training samples, which are then used to
train a model. As the model family is unstable and each bootstrap sample is slightly different
from the rest, the trained models will be different, and the ensemble diversity will be high.
Highly unstable models with a high variance tend to have a low bias, and the diversity of
models acts to cancel out this high variance which leaves behind the low bias. So bagging
exploits the high variance of the model. This is why random forests outperform simply bagging
decision tree classifiers, as random splitting causes random forests to be much more unstable.

Boosting

The abovementioned theory can be adapted to allow for weighted majority voting of the en-
semble members [see 80, Appendix D.2]. This can then be used to estimate the bias-effect,
variance-effect and diversity-effect for boosting algorithms. Figure 5.7 demonstrates the effect
of boosting decision stumps4 on the Mease data set [50] as the ensemble size varies.

There are some noticeable differences between the behaviour of parallel ensemble construc-
tions (Bagging and Random Forest) compared to sequential approaches (AdaBoost and Logit-
Boost [see 34]). The bias and variance remain constant for bagging approaches but vary with
ensemble size for boosting. This is due to the heterogeneity5 of the ensembled classifiers, each
classifier is trained to focus on a small subset of the training samples. Additionally, for boosting
approaches, the diversity-effect can be greater than the variance-effect. This is a consequence
of the boosting process. Each model is trained to correct the errors of the previous models, so
differences between the models are encouraged as the models must correct the previous errors.

Whereas bagging the decrease in the error comes from the cancelling out of the variance term
by increasing diversity The situation is more complicated for boosting. It relies on a tradeoff
between bias, variance and diversity. However, it is possible to make a general statement about
why boosting performs well. As the ensemble size increases, the bias-effect decreases as each

4A decision stump is a single layer decision tree or a decision tree with only an initial root node which
immediately connects to two leaf nodes.

5An ensemble is heterogeneous if the ensemble members are from different model families and homogeneous
if they are all from the same family.
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Figure 5.7: Bias-Variance-Diversity effect decomposition for boosting algorithms on Mease using
decision stumps. Adapted from Wood et al. [80, Figure 18]

model aims to correct the previous, so the model complexity increases. Due to this increase in
model complexity, the model’s variance increases which is (approximately) cancelled out by the
diversity-effect, leaving behind the model’s bias, but all three terms are in tradeoff. So boosting
works best when the ensembled models have a high bias (a weak classifier), and the effect of
boosting is to decrease the overall bias of the model. This is consistent with the observations
of Schapire [67] in his original proof.

5.5 Chapter Summary

We began this chapter by considering why we might want to combine the multiple models and
gave a statistical and mathematical justification for the results. Next, we introduced bagging
as a parallel ensemble construction technique and then improved upon it by introducing the
random forest algorithm, which improves upon classical bagging. We then moved to sequential
ensemble techniques, where AdaBoost was introduced and demonstrated its importance in
the history of machine learning. Finally, we discussed ensemble theory and presented a unified
theory to connect ensemble techniques to the bias-variance decomposition. In the next chapter,
we will see where the classical theory breaks down by discussing recent literature that applies
bias-variance theory to deep learning models.
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Bias, Variance and Deep Learning

So far, we have seen the classical understanding of a model’s bias and variance. Bias monoton-
ically decreases, and variance increases with increasing model complexity, yielding the classic
U-shaped risk curve. Under this framework, the aim is to find a sweet spot of model complexity
with the appropriate tradeoff between a model’s bias and variance.

However, modern deep learning practice demonstrates that larger, deeper models with many
hidden units are beneficial [45, 70, 83]. This contradicts the classical theory. These very large
and complex models should have a very high variance, so they should overfit the data and not
generalise well. This suggests that Geman et al. [36] were incorrect or need to be adapted. It
becomes even stranger; the risk curve is not even U-shaped for some deep neural networks. It
has the expected shape up to a point and then begins to drop off again. This is known as the
‘double descent’ phenomenon.

Geman et al. [36] were the first to study the bias and variance of neural networks and demon-
strated that they follow the classical theory as width/depth increases. However, these exper-
iments were limited as they only considered a simple network with four hidden layers. Neal
et al. [56] were the first to empirically measure the bias and variance of modern neural network
architectures; they demonstrated that the variance could decrease as the width increases toward
a highly overparameterised regime. In this case, we say that a model is overparameterised if
ρ = p

n
> 1 where n is the number of training samples and p is the number of parameters the

model has, or that the number of model parameters is much larger than the number of training
samples. The highly overparameterised regime is where ρ≫ 1.

In a series of papers, Belkin et al. [8–10] studied the risk curves for various modern machine
learning algorithms and proposed the double descent risk curve. They define it as the classical
U-shape when ρ < 1, the risk begins to drop after this point. The point ρ = 1, where we enter
the overparameterised regime, is called the interpolation threshold. Double descent has been
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shown to occur and described analytically in various regression and classification models.

6.1 Survey of Double Descent Literature

Advani and Saxe [1] explored the generalisation error’s behaviour in high-dimensional neural
networks. They demonstrated that a double descent curve could occur when training without
stopping early. Additionally, they used random matrix theory6 to describe the dynamics of both
the generalisation error and the training error. This showed that the generalisation performance
was worse on intermediate depth neural networks around ρ = 1 and that very large networks
do not harm generalisation performance.

Nakkiran et al. [55] continues on the work of Belkin et al. [8] and shows that various deep
learning models experience double descent, and it occurs as a function of both model size and the
number of training epochs as compared to model size alone. Additionally, they demonstrate that
sometimes artificial training noise must be added to observe a double descent curve and that
increasing the number of training samples hurts generalisation performance for some regimes.

Several papers have explored the asymptotic behaviour of overparameterised models and have
demonstrated useful theoretical results.

• Ba et al. [3] analytically described the asymptotic behaviour of a two-layer linear neural
network7 where the number of samples n, dimensions d and hidden units p all tend to
infinity at a constant rate. They demonstrate that double descent [3, Fig. 1] occurs when
the weights of the second model are optimised, and bias-variance decomposition of the
network is also presented [3, Figs. 2 and 3].

• Concurrently Mei and Montanari [51] explored the generalisation error of random feature
regressions and found asymptotic behaviour of both the training and generalisation errors
using a similar random matrix theory approach to Ba et al. [3]. They similarly found that
the model experiences a double descent curve, and the bias and variance were estimated.

• Hastie et al. [38] explored high-dimensional ridgeless linear regression, and the asymptotic
behaviour of the generalisation error was found along with the model’s bias and variance.
Double descent was found to occur, and they suggested that overparameterisation is
helpful for linear regression tasks. This paper is not directly related to deep learning, but
literature has demonstrated an equivalence between neural networks and linear models [2,
21, 27, 40].

Each of these papers demonstrates that bias and variance are non-monotonic and experience a
peak in specific regimes.

6This is a branch of maths concerning the properties of matrices whose elements are randomly drawn from
a probability distribution [see 22].

7This is a neural network with no activation function between its hidden layer and final output logits.
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But why exactly does double descent occur? Yang et al. [81] demonstrated that double descent
in deep neural networks could be connected back to the bias-variance tradeoff. However, the
classical theory of Geman et al. [36] must be adapted so that, as before, the bias is monotonically
decreasing, but the variance is unimodal (bell-shaped), not monotonically increasing.

6.2 Unimodal Variance and Double Descent

Until Yang et al. [81], the relationship between double descent and deep neural networks was
poorly understood, and many unanswered questions remained. First, double descent is hard
to observe in a robust and predictable way [3, 55]. For modern deep learning architecture,
sometimes artificial label noise must be added to reveal the double descent risk curve [55].
Second, there was no good explanation for why double descent occurs for deep neural networks.
Yang et al. [81] solved both problems by proposing a unimodal variance, or that the bias remains
monotonically decreasing with model complexity but that the variance rises to a peak and then
steadily drops off again.

Figure 6.1: Typical cases of the expected risk curve (in black) for neural networks. Blue: squared
bias. Red: variance. Figure borrowed from Yang et al. [81].

Figure 6.1 demonstrate the typical risk curves (shown in black) that are observed in neural
networks. Of these, Figure 6.1a is the most common, and Figure 6.1b is the double descent
curve. So in a sense, we can say that the bias-variance tradeoff still holds for modern deep
learning architectures. Still, the underlying tradeoff and theory must be adapted in the manner
Yang et al. [81] demonstrated.

This seems to contradict other theoretical work [3, 38, 51]. However, this difference is due to the
approach to finding the generalisation error. There are two ways to describe the generalisation
errors of the model: the random design and the fixed design. Each lead to a different bias-
variance decomposition8. Ba et al. [3], Hastie et al. [38] and Mei and Montanari [51] use the
fixed design, whereas Yang et al. [81] uses the random design, which is a more natural approach
to take and leads to the same bias-variance decomposition included in this report.

8The particulars of these different approaches are irrelevant to the current discussion, but the details can be
found in §2.1 of Yang et al. [81]
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6.3 Empirical Results

Visualising the unimodal variance on a relatively simple network architecture is possible. We
trained a fully connected deep neural network (DNN) with a single hidden layer and ReLU
activation on the MNIST dataset for 200 epochs using SGD with momentum 0.9. The learning
rate was 0.1, and a weight decay9 of 5 × 10−4 was applied. Figure 6.2 shows the DNN’s bias,
variance and risk as a function of the network width.
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Figure 6.2: Expected risk, bias and variance of a fully connected network with one hidden layer and
ReLU activation trained on squared loss. (LEFT) Expected risk. (CENTRE) Bias. (RIGHT)
Variance.

So what can we see? As Geman et al. [36] suggested, the network’s bias decreases monotonically
as the width (number of hidden units) increases. This is because the more hidden units, the
more complex and expressive representation can be encoded by the network or put another
way, the network becomes more flexible, and the model complexity increases. As Yang et al.
[81] predicted, the variance is unimodal, with a clear peak occurring when the network width
is 2, decreasing monotonically from that point. The peak occurs here as this is around the
interpolation threshold and is consistent with Belkin et al. [8–10].

The DNN’s risk does not follow a double descent curve. Instead, it follows Case 1 of Figure 6.1.
If we look at Figure 6.2, we can see why this occurs — the bias dominates the variance, so the
bias is the main contributor to the risk and will be the main contributor to the risk curve’s
shape. This also gives us an insight into the nature of double descent. We can conclude there
are two preconditions for double descent: (1) unimodal variance, and (2) the variance dominates
the bias. These preconditions are evident in Case 2 of Figure 6.1 and Figures 2, 3(b) and 11 of
Yang et al. [81].

9This means that an L2 regularisation is applied to the network. Krogh and Hertz [46] demonstrated why
this is beneficial.
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6.4 Chapter Summary

In this chapter, we have discussed how bias-variance theory applies to state-of-the-art deep
learning approaches. We began by demonstrating how the classical theory breaks down when
considering modern deep learning architectures and then discussed the double descent risk curve
that these architectures can experience. Then, we summarised the recent literature regarding
double descent across various overparameterised regimes. Finally, we demonstrated that the
behaviour of modern deep learning architectures could be explained by adapting classical theory
so that the variance is unimodal. We have covered all the necessary material to answer the
questions posed in Chapter 1. The final chapter presents our conclusions.
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Conclusion

Our goal for this report was to explore how bias-variance theory can be used to explain model
behaviour. In this chapter, we first answer the four research questions posed in Chapter 1 and
then discuss possible further work.

7.1 Summary of Results

7.1.1 Is the Bias-Variance Tradeoff a Helpful Way to Describe
Model Behaviour?

The bias-variance tradeoff is a helpful way to describe model behaviour. It conveniently de-
scribes the vast majority of simple behaviour and gives a formal mathematical framework
to allow us to reason about behaviour due to its connection to SLT. Additionally, it can be
used to reason about more complicated cases: regularisation (Chapter 4), ensemble meth-
ods (Chapter 5), and overparameterised training regimes using large deep learning models
(Chapter 6).

However, there are some fundamental limitations. Finding a bias-variance decomposition for
several loss functions, most notably the 0–1 loss, is impossible, so a surrogate loss must be used
instead. This can limit the types of models it is possible to reason with through this framework.
Additionally, the bias-variance decomposition only gives the sources of generalisation error and
the relative importance of each cause; it does not give a bound on the model’s generalisation
performance or say anything about the model’s behaviour during training. We need other
techniques to reason about these areas of model behaviour, and the bias-variance tradeoff is
only a tiny part of a complete theory about model behaviour. Despite these limitations, the
bias-variance tradeoff is among the most valuable ways to describe model generalisation. In
most cases, the aim is to diagnose the cause of poor generalisation performance. The bias-
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variance tradeoff gives an intuitive way to do this.

7.1.2 How Can the Bias/Variance of a Model be Reduced?

It is possible to reduce the bias and variance of a model, Table 2.1 summarises possible ap-
proaches.

The variance of a model can be reduced in several ways:

• Reduce the number of training samples by either reducing the proportion of data left in
the training split of the data set or early stopping when using an iterative-based optimiser.

• Applying explicit regularisation to the model reduces the model’s variance by constraining
the model class and forcing the trained model to be simpler. Recent literature on the
theory of gradient-based optimisation methods suggests that using SGD-based optimisers
act as a form of implicit regularisation and reduces the model’s variance.

• Bagging a very unstable mode with a high variance causes the variance to be cancelled
out by the ensemble diversity.

Reducing a model’s bias is trickier but can be done in the following ways:

• Increase the number of training samples so the model has more data to update the weights
for parameterised function approximators and to learn the mapping between the input
and output spaces.

• Boosting can be performed, which has the general effect of reducing the bias of the final
model. However, the impact of boosting the bias is more complicated.

7.1.3 When Does the Classical Bias-Variance Tradeoff Break
Down?

Geman et al. [36] proposed the classical bias-variance tradeoff. This explanation for gener-
alisation behaviour only applies to classical machine learning techniques using only a single
model, which makes sense as this theory was originally proposed in 1992 and was very much
at the early doors of the field. Chapters 2 and 4 demonstrated that it holds for a simple ex-
ample of polynomial regression (Figure 2.8) and correctly explains the behaviour of explicit
regularisation.

However, Geman et al. [36] cannot explain the behaviour of large or ensembled models, so
the classical theory does break down in a sense. For ensemble methods, the classical theory
holds for a single model, but the extension comes when diversity is introduced to describe the
ensemble in addition to the individual member models. In a highly overparameterised regime,
the classical theory must be adapted to a unimodal variance, but if ρ < 1, then the classical
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theory applies. Both cases suggest the classical bias-variance decomposition breakdown, but
they are more accurately thought of as extensions of the classical theory and not the theory
breaks down.

7.1.4 Does the Bias-Variance Tradeoff Hold for Modern ML
Practice?

Chapter 6 explored recent literature on how the bias-variance tradeoff behaves for large deep
learning models and overparameterised regimes. Recent theoretical and empirical work has
attempted to explain the generalisation behaviour of deep networks, but as Yang et al. [81]
demonstrated, the classical understanding of the bias-variance tradeoff must be adapted. So it
appears that the bias-variance tradeoff is a possible way to explain why deep learning performs
so well, or at least part of a potential tool to explain deep learning behaviour. However, it is
very difficult to say anything more as this is an active area of research, and current literature
only discusses relatively simple networks with few hidden layers.

7.2 Achievements

Before beginning this project, I had a general introduction to the concepts of both overfitting
and underfitting, as well as the existence of bias and variance, through COMP13212 Data
Science and COMP24112 Machine Learning. However, the mathematical background and the
theoretical underpinnings of machine learning were novel to me as my previous course units
tended to have a more practical focus. This was in addition to the ideas and literature of
ensemble theory (Chapter 5) and deep learning theory (Chapter 6). With this in mind, I
achieved the following during this project:

• Increased my understanding of machine learning and approaches to formalise notions of
model behaviour using Statistical Learning Theory and the Empirical Risk Minimisation
principle.

• Derived the bias-variance decomposition for both the squared, cross-entropy losses and
the generalised bias-variance decomposition for Bregman divergences.

• I implemented code to calculate the bias-variance decomposition for the squared loss and
KL divergence (see Chapter B for the code listings). I used the tool Wood et al. [80]
developed for the bias-variance-diversity decompositions presented in Chapter 5.

• Explored recent literature to explore how the classical machine learning theory can be
used to explain various machine learning approaches and techniques and gave empirical
evidence to support this.
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7.3 Reflection

All of the research questions posed in Chapter 1 have been answered, and there is sufficient
theoretical underpinning and empirical evidence for the conclusions presented above. So I would
conclude that this project has been a success. I have enjoyed researching and writing about bias-
variance decompositions and the generalisation dynamics of machine learning models. During
this project, I have become more confident reading research papers and developed my skills in
writing proofs and mathematics in general. Completing this project has reinforced my desire to
pursue postgraduate studies and eventually a PhD in machine learning theory — it has opened
the door to the world of machine learning theory and the maths behind it.

My biggest challenge in the project was completing the KL divergence proof presented in
Chapter 3. Initially, I attempted to use the decomposition presented by Heskes [39] as this
was the original version of the proof. Unfortunately, the approach used in the paper was very
unintuitive, and the article was poorly written, with the proof being challenging to follow and
comprehend. The Bregman divergence proof presented is much simpler and easier to follow.
I was aware of this approach towards the beginning of my project, and it would have been a
more productive use of my time to focus on this approach from the start instead of Heskes’
proof.

If I were to start this project again, I would have started the chapter and research on deep
learning at an earlier opportunity. This would have allowed me to expand upon the empirical
results given in the chapter and consider the case of more complex models to have an example
of double descent risk curve with a unimodal variance and monotonically decreasing bias.

7.4 Future Work

7.4.1 Margin Losses

This project has only focused on distance-based loss functions such as squared and cross-entropy
losses. Another type of loss function is margin losses such as the logistic loss and exponential
loss. Wood et al. [79] analysed the bias-variance decomposition of margin losses. This can be
used to study other machine learning algorithms, tasks and loss functions.

7.4.2 Bias, Variance and Deep Learning

Why deep learning approaches work and generalise well are open questions. Due to the dom-
inance of deep learning, they are critical questions in ML theory. Current literature has only
focused on very simple linear networks with few layers. Further work to analyse the asymptotic
behaviour of bias/variance of non-linear networks as a function of increasing depth could help
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explain the generalisation performance of deep network architectures and lead to a richer theory
underpinning empirical work.

7.4.3 A Unified Theory of Deep Learning

The bias-variance tradeoff describes the generalisation performance of machine learning al-
gorithms. However, there are other questions we might want to know the answer to, such as:
(1) can we calculate an upper bound on the generalisation error of the model, and (2) how
quickly, if at all, will a model converge to a local minimum on the training samples. To answer
these questions, different approaches and frameworks need to be used. Generalisation bounds
can be estimated using statistical learning theory, including Vapnik-Chervonenkis (VC) dimen-
sions [76, 77], Rademacher Complexities [7, 43, 44] and uniform stability [11, 53, 60]. Recent
theoretical work exploring the training dynamics of gradient-based optimisers and their conver-
gence properties [5, 18–20, 24] have increased our understanding of the training process. Each
strand of current research explains an individual piece of machine learning, and combining these
strands could lead to a unified theory to explain model behaviour and deep learning.
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APPENDIX A

Large Language Models (LLMs) Data

Year Model name Num. Parameters
Oct 2018 ELMo [58] 93.6M
Feb 2019 GPT-2 [62] 1.5B
May 2019 BERT [25] 340M
Sep 2019 Megatron-LM [69] 8.3B
Jan 2020 T5 [63] 11B
Feb 2020 Turing-NLG [52] 17.2B
June 2020 GPT-3 [17] 173B
May 2021 LaMBDA [74] 137B
Oct 2021 Megatron-Turing NLG [72] 530B

Table A.1: This is a tabular version of the data which was plotted in Figure 1.1



APPENDIX B

Code Listings for Bias-Variance Decompositions

To make the code modular, the LossFunction class was written as an abstract base class.
To facilitate type hinting and autocompletion, BiasVarianceResult was typed as a named
tuple. This allowed the experiment code to be loss function agnostic and gave better tooling
support for autocompletion using type hints. For each loss function, we simply override the
calculate_bias_variance method to implement the decomposition for each loss function.

Python Listing 1: Loss Function Abstract Class

from typing import NamedTuple

from abc import ABC

from abc import abstractmethod

import numpy.typing as npt

class BiasVarianceResult(NamedTuple):

expected_risk: npt.NDArray

bias: npt.NDArray

var: npt.NDArray

class LossFunction(ABC):

@classmethod

@abstractmethod

def calculate_calculate_bias_variance(

cls, true: npt.NDArray, pred: npt.NDArray

) -> BiasVarianceResult:

...

https://docs.python.org/3/library/abc.html
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Python Listing 2: Squared Loss Decomposition

import numpy as np

import numpy.typing as npt

class SquaredLoss(LossFunction):

@classmethod

def calculate_calculate_bias_variance(cls, y: npt.NDArray, f: npt.NDArray)

-> BiasVarianceResult:↪→

"""

Calculates the bias-variance decomposition for the squared loss.

:param y: 1 x N matrix of the test label

:param f: D x N matrix of model predictions

:return: named tuple of (expected_risk, bias, var)

"""

Ef = np.mean(f, axis=0)

expected_risk = ((f - y) ** 2).mean()

avg_bias = np.mean((Ef - y) ** 2)

Ef2 = np.mean(f**2, axis=0)

avg_var = np.mean(Ef2 - Ef**2)

return BiasVarianceResult(expected_risk=expected_risk, bias=avg_bias,

var=avg_var)↪→

Python Listing 3: KL Divergence Decomposition

import numpy as np

import numpy.typing as npt

from scipy.special import rel_entr

class KLDivergence(LossFunction):

@classmethod

def calculate_expected(cls, outputs: npt.NDArray) -> npt.NDArray:

"""

Calculates the expected model.

:param outputs: Raw models output as D x N x K

:return: expected model based on input as an K x N matrix

"""

# Numerator - exp(E[ln(p_i(c)O)] this yields a N x K matrix

numerator: npt.NDArray = np.exp(np.mean(np.log(outputs), axis=0))

# Denominator - sum(exp(E[ln(p_i(c))]) where sum is over the K
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denominator: npt.NDArray = numerator.sum(axis=0)

return numerator / denominator

@classmethod

def calculate_calculate_bias_variance(

cls, pi: npt.NDArray, pi_0: npt.NDArray

) -> BiasVarianceResult:

"""

Calculates the bias variance decomposition.

:param pi_0: This is the one-hot-encoded true

values (each column is a distribution) so

is an K x N matrix

:param pi: This is the output distribution

from the model D x K x N matrix

:return: BiasVarianceResult

"""

pi_hat: npt.NDArray = cls.calculate_expected(pi)

# Now get bias by averaging over the datapoints

# E[K(p0 || hat{p})] for a individual datapoint i <= N

bias = rel_entr(pi_0, pi_hat).sum(0).mean()

# Variance - Ex[ET[K(hat{p} || p)]]

variance = rel_entr(pi_hat, pi).sum(1).mean(0).mean()

# Expected risk - Ex[ET[K(p0 || p)]]

expected_risk = rel_entr(pi_0, pi).sum(1).mean(0).mean()

return BiasVarianceResult(expected_risk=expected_risk, bias=bias,

var=variance)↪→
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