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Abstract

Relational data is found across the many fields and extends beyond the pairwise interac-
tions modelled by graph-based machine learning methods. This has led to an explosion
of interest in Topological Deep Learning to process these more complex higher-order
interactions. One such domain is hypergraphs, which extend graphs by connecting an
arbitrary set of nodes, and have been extensively studied with many hypergraph-based
methods developed. These approaches struggle to process heterogeneous hypergraphs
that involve many different types of entities and relationships.

Inspired by recent work on cellular sheaves, this project explores how cellular sheaves
can be attached to a hypergraph to add additional structure to mediate heterogeneous
message passing. I demonstrate that adjusting sheaf learners to account for type inform-
ation is beneficial with an increase in performance of up to 2%. These heterogeneous
sheaf learners are tested on several heterogeneous graph and hypergraph benchmarks,
achieving competitive or state-of-the-art performance across each dataset.

To generalise existing sheaf-based architectures, I propose the Sheaf-MPNN and SheafAll-
Set methodologies that generalise sheaf message passing to graphs and hypergraphs,
respectively. These approaches are used to integrate DeepSet and SetTransformer with
sheaf message passing to create a series of neural architectures that are more flexible and
expressive than existing sheaf-based architectures. They are SheafDeepSet and Sheaf-
SetTransformer for graphs with SheafDeepAllSets and SheafAllSetTransformers for
hypergraphs. Finally, I develop the HyperSheaf library for sheaf-based multi-modal
hypergraph neural networks which provides a series of implementations for all of the
architectures proposed in this project.

The source code for this project is available at: https://github.com/AspieCoder1/
mphil-acs-repo
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Chapter 1

Introduction

The prevalence of relational data in fields such as medicine [65], drug discovery [38],
recommender systems [75] and computer vision tasks [41] has led to substantial in-
terest in graph-based methods. This has led to the development of Geometric Deep
Learning [7], which attempts to provide a principled approach to machine learning by
providing a framework to exploit the geometry and structure inherent in data. How-
ever, higher-order interactions are prevalent in fields such as medical imaging [20, 21],
neuroscience [25], social networks [1] and chemistry [39]. This has led to the introduc-
tion of hypergraph-based methods and, recently, the field of Topological Deep Learning
(TDL) [26, 53]. Hypergraphs extend graphs beyond pairwise interactions by allowing ar-
bitrary sets of nodes to be connected. This project explores how sheaf-based neural archi-
tectures can process heterogeneous hypergraphs, a subset of TDL that extends graphs to
model higher-order interactions involving many different types of nodes and hyperedges.

Citation graphs are commonly modelled as heterogeneous graphs. For example, the
DBLP citation graph for computer science contains information about a paper, its au-
thors, keywords, and where it was published. Cui et al. [11] demonstrates that elec-
tronic health records can be treated as a heterogeneous hypergraph, where the nodes
model medical observations such as prescriptions, test results or imaging data and the
hyperedges connect all the nodes related to a visit and contain general clinical notes and
a summary of the visit.

Lv et al. [46] surveyed different approaches of processing heterogeneous graph data.
Standard Graph Neural Networks (GNNs) struggle to process heterogeneous data due
to oversmoothing. This is where neighbouring nodes have increasingly similar represent-
ations as the message passing process continues, particularly with deeper GNNs with
multiple message passing layers. In the case of heterogeneous graphs and hypergraphs,
this causes all of the type-specific features and information to be lost during the message
passing process, greatly reducing the model’s performance. Recent literature [3, 4, 6,
13] has demonstrated that attaching a cellular sheaf [12, 63] to a graph helps mitig-
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ate oversmoothing. However, using sheaf-based methods to model heterogeneous data
remained unexplored.

Rosiak [58] motivates sheaves as a construction in which a series of local data assign-
ments (called sections) may be combined to form a coherent global representation or
data assignment (called the global section). Consider a set of four overlapping sensors
that observe an image (Figure 1.1), each observing some local data, which are then
‘glued’ together to create global data, in this case, the image. This creates a construction
that takes a series of compatible local data assignments and then ‘glues’ them together
piece by piece and constrained by one another to build a global representation of the im-
age. This results in a sheaf, where the individual images form the sections and the global
section is the combined images formed by combining the individual images to create a
coherent final result. The example is somewhat contrived but illustrates the underlying
idea.

Figure 1.1: Illustration of four overlapping image sensors observing an image. Photo by
Markus Leo on Unsplash.

Existing heterogeneous GNNs [36, 61, 73, 80] attempt to account for the heterogeneity
in the model architecture. However, the sheaf assigns a series of local data to each node
and edge in the graph, which are then connected together to create a global representa-
tion. This means that each edge and node can have completely different local meanings
if they can be connected to create a meaningful global representation. Put differently,
the sheaf implicitly models the heterogeneity in the data. This means that the model
architecture is no longer required to account for or model the data’s heterogeneity. The
sheaf handles it for us.

10

https://unsplash.com/@imnotaleo?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/kings-college-chapel-in-cambridge-england-c4S-TmH_swU?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash


1.1 Project aims
This project explores how equipping heterogeneous graphs and hypergraphs with cellu-
lar sheaves may improve performance on downstream tasks. I aim to answer the follow-
ing research questions:

• Does sheaf-based processing improve performance on heterogeneous datasets?

• What is the best way to incorporate heterogeneous information into the sheaf
framework?

• Is there a general framework that can describe sheaf graph and hypergraph neural
networks and be consistent with existing literature?

Additionally, I aim to implement all of the proposed architectures and methods into a
library, HyperSheaf, to allow other researchers to explore the methods and to enable the
reproducibility of my experimental results.

1.2 Achievements and novel contributions
The contributions of the work are as follows:

• I demonstrate the benefit of modelling heterogeneous data using Sheaf Graph
Neural Networks (SheafGNNs) and Sheaf Hypergraph Neural Networks (Sheaf-
HNNs) on a series of heterogeneous datasets. These techniques are competitive
against existing approaches and achieve state-of-the-art results on several bench-
marks.

• I introduce a series of novel heterogeneous sheaf learners demonstrating how the
restriction maps may be modified to account for the type of information encoded
in the heterogeneous data.

• I propose a general message passing framework for sheafs that may be applied
to graphs (Sheaf-MPNN) or hypergraphs (SheafAllSet). Additionally, I introduce
SheafDeepSet for graphs that universally approximates a SheafGNN as well as
SheafAllDeepSets and SheafAllSetsTransformer which universally approximates a
SheafHNN. Finally, I demonstrate how this framework may be applied to any ex-
isting message passing based graph or hypergraph neural network.

• I develop the HyperSheaf library that provides implementations of the architec-
tures and sheaf learners proposed in the project. This library is designed to allow
others to easily reproduce the experimental results included in this report and ad-
apt the architectures for custom datasets.
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1.3 Project structure
Chapter 2: Background. This chapter covers the necessary background that is built
upon in later chapters. It begins with a discussion of message passing approaches for
GNNs, then continues to give a formal definition of a cellular sheaf attached to a graph.
Next, it moves onto recent SheafGNN architectures proposed in literature. The chapter
concludes with a discussion on how these approaches can be lifted to create Hypergraph
Neural Networks (HNNs) and SheafHNNs.

Chapter 3: Related work. Discusses various homogeneous and heterogeneous graph
and hypergraph architectures proposed in recent literature.

Chapter 4: Heterogeneous sheaf learners. Demonstrates how sheaf learners may be
modified to account for type information in a heterogeneous setup. It also provides the
time complexities of all the proposed modified sheaf learners.

Chapter 5: Experimental results. Provides a series of experimental results demonstrat-
ing the performance benefit of using sheaves for heterogeneous data.

Chapter 6: A general sheaf message passing framework. Proposes a general message
passing framework for sheaves attached to graphs and hypergraphs. In addition, it pro-
poses a series of more expressive and general architectures than those presented in the
literature.
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Chapter 2

Background

This chapter covers the background that underpins the work presented in subsequent
chapters. It begins with a discussion of heterogeneous and homogeneous graphs and
graph message passing. It then discusses how cellular sheaves may be attached to graphs
and incorporated into graph-based processing techniques. The chapter then discusses
how these approaches may be lifted to hypergraphs.

2.1 Homogenous and heterogenous graphs
Graphs can be classified as either homogeneous or heterogeneous. In homogeneous
graphs each node or edge has the same type, whereas heterogeneous graphs have differ-
ent node and edge types. Graphs can be heterogeneous in either their nodes, edges, or
both. Figure 2.1 illustrates heterogeneous and homogeneous graphs. We give a formal
definition below.

Figure 2.1: Homogeneous and heterogeneous graphs. (LEFT) A homogeneous graph.
(CENTRE) A graph with heterogeneous edges. (RIGHT) A graph that is heterogeneous with
respect to its nodes. Colour is used to indicate different edge types and node types, respectively.

Definition 2.1. A heterogeneous graph is a tuple 𝒢 = (𝒱, ℰ, 𝒮, 𝒯) where 𝒱 is a set of
nodes, ℰ is a set of edges, 𝒮 is a set of node types and 𝒯 is a set of edge types. The type
of a node 𝑢 ∈ 𝒱 is denoted as 𝜏𝑢 and the type of an edge 𝑒 ∈ ℰ as 𝜏𝑒 or 𝜏𝑢𝑣.

Remark. For the sake of convenience, we shall assume that each type is represented as
an integer label, i.e. 𝜏𝑢 ∈ {1, … , |𝒮|} and 𝜏𝑒 ∈ {1, … , |𝒯|}.
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A real-world example of a homogeneous graph is a social network in which all the nodes
represent people, and the edges represent relationships between people. The social net-
work could be converted into an edge-heterogeneous graph by modelling the particular
type of relationship, such as whether people are friends, married, or siblings. Node-
heterogeneous graphs tend also to be edge-heterogeneous. This is exemplified by cita-
tion graphs, which may store information about the authors, the publication venue, and
other details of published articles. In this example, edge-heterogeneity comes from the
different possible relations connecting the node types, such as ‘author of ’ and ‘published
at’ relationships that may be modelled in the graph.

2.2 Graph Neural Networks
Graph Neural Networks (GNNs) [23, 60] are a class of neural network architectures that
operate on graphs and other relational structures with nodes and edges. Figure 2.2 illus-
trates a simple GNN, the hidden representations are computed by aggregating a node’s
neighbourhood using message passing [5, 22]. After this, the hidden representations are
fed into a classifier based on whether the downstream task is node classification, link
(edge) prediction, or graph classification.

Node classification

Graph classification

Link prediction

GNN

Figure 2.2: The Graph Neural Network. The latent representations are computed usingmessage
passing, where a node’s value is updated based on the aggregation of its neighbourhood. The
latent representations are then fed into a classifier based on the final downstream task. Here h𝑢
is the latent representation of the node 𝑢, h𝑢𝑣 is the latent representation of the edge connecting
node 𝑢 to 𝑣 and ⨁ is a permutation-invariant pooling function such as max or sum.

More fomally, wemay define the GNN as aMessage Passing Neural Network (MPNN) [22].
Given a graph 𝒢 = (ℰ, 𝒱), a GNN layer applies the message passing over the graph to
update node representations based on the aggregation of its neighbourhood. The rep-
resentation of node 𝑢 at layer 𝑘 + 1 is given by the following equation

h(𝑘+1)
𝑢 = 𝜙 (h(𝑘)

𝑢 , ⨁
𝑣∈𝒩𝑢

𝜓 (h(𝑘)
𝑢 ,h(𝑘)

𝑣 )) , (2.1)

where 𝜙 is the update function that computes the updated node representation of 𝑢, 𝜓 is
a learnable message function that computes the message sent from the node 𝑣 to 𝑢 and
⨁ is a permutation invariant aggregation function and h(0)

𝑢 = x𝑢.
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2.2.1 GNNs as modified a heat diffusion process
Recent work [6, 9] demonstrates that GNNs can be considered as a diffusion process
following the heat equation, expressed using Newton’s notation as

̇𝑥 = Δ𝑥 (2.2)

where Δ is the Laplacian operator. Consider the graph with the adjacency matrix A, a
diagonal degree matrix D and a 𝑛 × 𝑑 node feature matrix X. Let Δ0 ≔ I − D−1/2AD−1/2

be the normalised graph Laplacian. We may now define the following heat diffusion
process and its Euler discretisation with respect to time:

Ẋ(𝑡) = Δ0 X(𝑡) ⇝ X(𝑡 + 1) = X(𝑡) − Δ0 X(𝑡) = (I − Δ0)X(𝑡). (2.3)

Equation (2.3) is similar to the GCN [42] update equation. A GCN is simply a modified
heat diffusion equation with a learnable parameter matrixW and a non-linear activation
𝜎 added

GCN(X,A) ≔ 𝜎 (D̃−1/2ÃD̃−1/2 XW) = 𝜎 ((I − Δ0)XW) (2.4)

where Ã = A + I is the augmented adjacency matrix with self-loops and D̃ is the aug-
mented degree matrix calculated using Ã. Chamberlain et al. [9] introduced the more
general framework Graph Neural Diffusion (GRAND) and demonstrated how a similar
construction can be used to derive other architectures, including GAT [70] and Graph-
SAGE [28].

2.2.2 Oversmoothing
Chapter 1 discussed the oversmoothing [8] problem with MPNNs. Its effect on a hetero-
geneous graph is illustrated in Figure 2.3. This can be connected back to the diffusion
equation above. Over time, heat equations smooth out as they reach an equilibrium.
Therefore, it should not be surprising that such diffusion processes on graphs lead to in-
creasingly smooth and similar features across node neighbourhoods. For heterogeneous
graphs, this causes the features distinct to each separate node or edge type in the graph
to be lost, resulting in poor performance. Due to the oversmoothing effect, modelling
heterogeneous graphs using classical GNNs is challenging. This work addresses the issue
by attaching a cellular sheaf to the graph to mediate the message passing process.

2.3 Cellular sheaves
Going from the photo example in Figure 1.1, let us now consider what happens if we
move from images to a topological space. Let 𝐶 = {𝑈𝛼 ∶ 𝛼 ∈ 𝐴} be an open cover of a
topological space 𝑋. The local data assignments are created by defining a space over
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Figure 2.3: Example of oversmoothing on a heterogeneous graph. The arrows indicate sub-
sequent time steps or multiple message passing layers in the network. Over time, the features
become increasingly smooth and tend towards the equilibrium in the rightmost graph.

each 𝑈𝛼, which must be ‘glued’ together to create the global representation. This can be
done by defining a series of maps between the spaces to connect them together. Since
these maps constrain or restrict the other spaces, they are known as restriction maps.

Figure 2.4: Illustration of a sheaf attached to a set. Here, the stalks are indicated by the white
boxes attached to the element by the red dashed line. The restriction maps are indicated by black
arrows.

A sheaf may also be defined over a set, which is commonly known as a cellular sheaf [12,
63]. Consider a group of people who are talking at a party. This can be modelled as
a sheaf where the local sections are the opinions of each of the participants, and the
restriction maps are the conversations between them. More formally, each element of
the set has a vector space attached to it known as a stalk and restriction maps are then
defined to glue the stalks together to create the global representation. This is illustrated
in Figure 2.4. This can be considered a form of discrete manifold, where the points in
the set are elements of the topological space, and the stalk defines the point’s neigh-
bourhood. The restriction maps then act as a form of parallel transport to connect the
neighbourhoods. This construction can be applied to any set and, most importantly, for
our discussion, both graphs and hypergraphs.

Definition 2.2. A cellular sheaf (𝒢, ℱ) attached to an undirected graph 𝒢 = (𝒱, ℰ) is
defined as a triple ⟨ℱ(𝑢), ℱ(𝑒), ℱ𝑢⊴𝑒⟩ consisting of:

• Node stalks ℱ(𝑢): a vector space associated with each vertex 𝑢 ∈ 𝒱.

• Edge stalk ℱ(𝑒): a vector space for each edge 𝑒 ∈ ℰ.

• Linear restriction maps ℱ𝑢⊴𝑒 ∶ ℱ(𝑢) → ℱ(𝑒) for each incident node-edge pair
𝑢 ⊴ 𝑒.
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The space formed by the node stalks is known as the space of 0-cochains, and the space
formed by the edge stalks is known as the space of 1-cochains.

Definition 2.3. Given a sheaf (𝒢, ℱ), the space of 0-cochains 𝐶0(𝒢, ℱ) is the direct sum
of the vector stalks 𝐶0(𝒢, ℱ) ≔ ⨁𝑢∈𝒱 ℱ(𝑢). Similarly, the space of 1-cochains 𝐶1(𝒢, ℱ)
is the direct sum over the edge stalks 𝐶1(𝒢, ℱ) ≔ ⨁𝑒∈ℰ ℱ(𝑒).

Remark. For a co-chains x ∈ 𝐶0(𝒢, ℱ), x𝑢 is the representation of the node 𝑢 in the node
stalk ℱ(𝑢).

The spaces𝐶0(𝒢, ℱ) and𝐶1(𝒢, ℱ) define the co-boundarymap 𝛿 ∶ 𝐶0(𝒢, ℱ) → 𝐶1(𝒢, ℱ).
Opinion dynamics [31] provide an interpretation of each of these objects. The node stalk
ℱ(𝑢) represents the ‘private opinion’ of the node 𝑢 and ℱ𝑢⊴𝑒 x𝑢 is how the opinion is ex-
pressed in the public ‘discourse space’ formed by the edge stalk ℱ(𝑒). The co-boundary
map 𝛿 measures the disagreement between nodes.

Definition 2.4. Given an arbitrary orientation for each edge 𝑒 = 𝑢 → 𝑣 ∈ 𝐸, co-boundary
map 𝛿 ∶ 𝐶0(𝒢, ℱ) → 𝐶1(𝒢, ℱ) is defined as 𝛿(x)𝑒 ≔ ℱ𝑣⊴𝑒 x𝑣 − ℱ𝑢⊴𝑒 x𝑢.

The co-boundary map 𝛿 may be used to define the sheaf Laplacian, which measures the
aggregated disagreement at each node.

Definition 2.5. The sheaf Laplacian of a sheaf (𝒢, ℱ) is defined as 𝐿ℱ ≔ 𝛿⊤𝛿 and can be
defined node-wise as

𝐿ℱ(x)𝑢 = ∑
𝑢,𝑣⊴𝑒

ℱ⊺
𝑢⊴𝑒(ℱ𝑢⊴𝑒 x𝑢 − ℱ𝑣⊴𝑒 x𝑣). (2.5)

The sheaf Laplacian is a positive semi-definite block matrix with block diagonals of
𝐿ℱ𝑢𝑢

= ∑𝑢⊴𝑒 ℱ⊤
𝑢⊴𝑒 ℱ𝑢⊴𝑒 and off-diagonal blocks 𝐿ℱ𝑢𝑣

= − ℱ⊤
𝑢⊴𝑒 ℱ𝑣⊴𝑒.

Definition 2.6. The normalised sheaf Laplacian is given by Δℱ ≔ 𝐷−1/2𝐿ℱ𝐷−1/2 where
𝐷 is the block diagonal of 𝐿ℱ.

Unless otherwise stated, we assign the same 𝑑-dimensional space to each stalk, that is
ℱ(𝑢) = ℝ𝑑 and ℱ(𝑒) = ℝ𝑑 where 𝑑 is the dimension of the stalk. This means that the
sheaf Laplacian has the dimensions of 𝑑𝑛 × 𝑑𝑛. Assuming a trivial sheaf, all stalks are ℝ,
and all restriction maps are the identity, we recover the standard graph Laplacian. This
leads to a PDE analogous to Equation (2.3):

X(0) = X, Ẋ(𝑡) = −Δℱ X(𝑡). (2.6)

2.3.1 Sheaves prevent oversmoothing?
Bodnar et al. [6] demonstrated that oversmoothing can be mitigated by attaching a cel-
lular sheaf to the mediate message passing over the graph. This is due to the behaviour
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of the sheaf Dirichlet energy during the diffusion process. The Dirichlet energy of a func-
tion 𝑓 measures its variability and is minimised by the eigenvectors of the normalised
Laplacian. The Dirichlet Principle [15, p. 42] states that solving the Laplace equation
Δ𝑢(𝑥) = 0 is equivalent to finding a function 𝑢 with minimal energy subject to appropri-
ate boundary conditions. We now define the Dirichlet energy on a graph.

Definition 2.7. The Dirichlet energy 𝐸(x) of a scalar signal x ∈ ℝ|𝑉 | on a (weighted)
graph 𝒢 is defined as

𝐸(x) = x⊤ Δ̃0 x = 1
2 ∑

𝑒≔(𝑢,𝑣)
𝑤𝑢𝑣 ( 𝑥𝑢

√1 + 𝑑𝑢
− 𝑥𝑣

√1 + 𝑑𝑣
)

2

. (2.7)

For a signal over a vector field X ∈ ℝ|𝑉 |×𝑓 , the Dirichlet energy is defined as

𝐸(X) = tr(X⊤ Δ̃0 X) = 1
2 ∑

𝑒≔(𝑢,𝑣)
𝑤𝑢𝑣∥ x𝑢

√1 + 𝑑𝑢
− x𝑣

√1 + 𝑑𝑣
∥

2

2
. (2.8)

Cai and Wang [8] demonstrated that the Dirichlet energy decreases exponentially with
respect to the number of layers and can be used to analyse the oversmoothing tendency of
homogeneous GNNs. Minimising Equation (2.8) causes the representation of the neigh-
bouring nodes to become similar, which is oversmoothing. So, oversmoothing can be
exactly characterised in terms of the behaviour of this energy. Definition 2.6 minimises
a slightly different energy function known as the sheaf Dirichlet energy 𝐸ℱ(x).

Definition 2.8. The sheaf Dirichlet energy for a sheaf (𝒢, ℱ) is defined as

𝐸ℱ(x) ≔ x⊤Δℱ x = 1
2 ∑

𝑒≔(𝑢,𝑣)
∥ℱ𝑢⊴𝑒 𝐷−1/2

𝑢 x𝑢 − ℱ𝑣⊴𝑒 𝐷−1/2
𝑣 x𝑣∥

2

2
. (2.9)

It is now clear why sheaves prevent the oversmoothing of node features. Equation (2.9)
minimised the difference between the node representations in the edge stalk instead of
the feature space, so the oversmoothing occurs in the edge stalk space instead of the
node feature space. This is potentially ideal for heterogeneous setups as it will preserve
the type-specific information encoded in the input features.

2.4 SheafGNNs

2.4.1 Sheaf Neural Networks
Hansen and Gebhart [30] introduced the Sheaf Neural Network based on the discrete
sheaf diffusion process X(𝑡+1) = X(𝑡)−Δℱ X(𝑡) = (I−Δℱ)X(𝑡) based on Equation (2.6).
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Assuming X ∈ ℝ𝑛𝑑×𝑓1, we arrive at the following upate rule

Y = 𝜎((I𝑛𝑑 − Δℱ)(I𝑛 ⊗ W1)XW2) ∈ ℝ𝑛𝑑×𝑓2, (2.10)

where 𝑓1, 𝑓2 are the number of input and output feature channels, ⊗ is the Kronecker
product, W1 ∈ ℝ𝑑×𝑑,W2 ∈ ℝ𝑓1×𝑓2 are weight matrices and 𝜎 is a non-linear activation
function. This approach has two limitations: (i) the sheaf is hand-crafted with a di-
mensionality 𝑑 = 1 using a synthetic dataset with full-knowledge of the data generation
process; and (ii) the sheaf is static and cannot evolve over time based on the intermediate
feature representations. Neural Sheaf Diffusion resolves both of these limitation.

2.4.2 Neural Sheaf Diffusion
Neural Sheaf Diffusion (NSD) [6] uses the modified diffusion equation

Ẋ(𝑡) = −𝜎(Δℱ(𝑡)(I⊗W1)X(𝑡)W2). (2.11)

Bodnar et al. focus on a discrete version of Equation (2.11)

X(𝑡+1) = X𝑡 −𝜎(Δℱ(𝑡)(I⊗W(𝑡)
1 )X(𝑡) W(𝑡)

2 ). (2.12)

where the matrix X0 ∈ ℝ𝑛𝑑×𝑓 is constructed by applying an MLP to the original node
feature matrix. The key difference from Hansen and Gebhart [30] is that the sheaf
Laplacian Δℱ(𝑡) is that of a sheaf (𝒢, ℱ(𝑡)) that evolves over time and can be learnt from
the underlying graph structure. This allows the model to use the intermediate feature
representations to update the graph’s underlying topology and the diffusion process’s
behaviour.

Sheaf learning. Each 𝑑 × 𝑑 restriction map ℱ𝑢⊴𝑒≔(𝑢,𝑣) is learnt using a parametric func-
tion Φ(x𝑢, x𝑣) which is commonly a Multi-Layer Perceptron (MLP) followed by reshaping
the output as it can learn any sheaf on a graph [6, Proposition 18]. It is possible to dis-
tinguish between several different functions Φ based on the types of matrices learnt:

• Diagonal (Diag-nsd). The restriction maps are diagonal matrices. This limits the
number of learnable parameters per edge and leads to a block diagonal sheaf Lapla-
cian, resulting in fewer operations in sparse matrix multiplication. However, a
downside is that 𝑑-dimension stalks only interact with the left W1 multiplication.

• Orthogonal (O(d)-nsd). Each restriction map is an element of 𝑂(𝑑) the lie group of
𝑑 × 𝑑 orthogonal matrices. This effectively computes a discrete vector bundle [19,
62, 78] from differential geometry [67, Chap. 3]. Orthogonal restrictionmaps have
several advantages: (i) they can mix stalks of various dimensions; (ii) they reduce
overfitting whilst reducing the number of parameters; (iii) there is a stronger the-
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oretical motivation due to its connection to parallel transport on manifolds; and
(iv) the Laplacian is easier to normalise since the diagonal entries correspond to
the node degrees. These orthogonal matrices are constructed from the composition
of Householder reflections [50].

• General (Gen-nsd). Restrictionmaps are arbitrarymatrices. This is themost flexible
approach but is liable to overfitting. The sheaf Laplacian is harder to normalise
numerically as 𝐷−1/2 must be computed for each diagonal block 𝐷. The SVD must
be used to perform this at scale; however, if there are repeated eigenvalues, the
gradient of 𝐷 will be infinite. This makes the model harder to train and more
numerically unstable.

2.4.3 Sheaf Attention Networks
Barbero et al. [4] introduced Sheaf Attention Networks (SheafANs), which lift the atten-
tion mechanism of GATs to sheaves. A SheafAN layer is defined as

X(𝑡+1) = 𝜎((Λ̂(X(𝑡)) ⊙ Âℱ)(I𝑛 ⊗W(𝑡)
1 )X(𝑡) W(𝑡)

2 ) (2.13)

where Λ̂ = Λ ⊗ 1𝑑 such that Λ𝑢,𝑣(X) = 𝑎(x𝑢, x𝑣) is the attention mechanism used in
GATs [70], Â𝑢𝑣 = P𝑢𝑣 = ℱ⊺

𝑢⊴𝑒 ℱ𝑣⊴𝑒, W1 ∈ ℝ𝑑×𝑑 and W2 ∈ ℝ𝑓×𝑓 . Additionally, the layer
may be parameterised with a residual connection to yield a Res-SheafAN layer:

X(𝑡+1) = 𝜎((Λ̂(X(𝑡)) ⊙ Âℱ − I)(I𝑛 ⊗W(𝑡)
1 )X(𝑡) W(𝑡)

2 ). (2.14)

2.5 Hypergraphs
A key limitation of graphs is that they only encode pairwise relationships. Hypergraphs
extend graphs to consider higher-order interactions involving multiple nodes. This is
done by lifting the notion of edges to hyperedges, subsets of nodes connected and inter-
acting as a group.

Definition 2.9. A hypergraph is a tuple ℋ = (𝒱, ℰ) where 𝒱 is a set of nodes and ℰ ⊂
𝒫(𝒱) is a set of hyperedges. Two nodes 𝑢, 𝑣 ∈ 𝒱 are connected if and only if a hyperedge
𝑒 ∈ ℰ exists such as 𝑢, 𝑣 ∈ 𝑒.

Remark. Under this definition, a graph is a hypergraph with the extra constraint that all
hyperedges contain exactly two nodes.

Just as graphs may be represented as an adjacency matrix, hypergraphs may be repres-
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ented as a |𝒱| × |ℰ| incidence matrix H with entries defined as

H𝑢𝑒 =
⎧{
⎨{⎩

1 𝑢 ∈ 𝑒
0 otherwise.

(2.15)

Hypergraphs may also be represented as a bipartite incidence graph where each part of
the graph represents the nodes and hyperedges of the hypergraph respectively with the
node pair (𝑢, 𝑒) connected if 𝑢 ∈ 𝑒. Figure 2.5 illustrates both representations for an
example hypergraph.

v1

e 1 v2 v3

v5
v6

v7

v4

e 2

e 4
e 3

Figure 2.5: Example hypergraph and its representations. (LEFT) Hypergraph ℋ. (CENTRE)
Incidence matrix of ℋ. (RIGHT) Incidence graph of ℋ. Source: Wikipedia licensed under CC
BY-SA 3.0.

As with graphs, hypergraphs can be either homogeneous or heterogeneous, with the
hypergraph community referring to heterogeneous hypergraphs as multi-modal. A hy-
pergraph may be heterogeneous in its node, hyperedges, or both. It may be formally
defined by adapting Definition 2.1 to hypergraphs.

Definition 2.10. A heterogeneous hypergraph is a tuple ℋ = (𝒱, ℰ, 𝒮, 𝒯) where 𝒱 is a set
of nodes, ℰ a set of hyperedges, 𝒮 a set of node types, and 𝒯 a set of hyperedge types.
The type of a node 𝑢 ∈ 𝒱 is denoted 𝜏𝑒 and the type of a hyperedge 𝑒 ∈ ℰ as 𝜏𝑒.

2.6 AllSet: message passing for hypergraphs
Chien et al. [10] introduced AllSet, a general message passing framework for Hypergraph
Neural Networks (HNNs). The message passing occurs over the incidence graph of the
hypergraph (see Figure 2.5) in two stages (Figure 2.6):

1. A message is sent from each node to its incident hyperedge and then aggregated
by the hyperedge.

2. A message is sent from each hyperedge to its incident nodes and then aggregated
by the node.

Let 𝑉𝑒,X = {{X𝑢,∶ ∶ 𝑢 ∈ 𝑒}} be the multiset representation of the hidden node represent-
ations contained in the hyperedge 𝑒. Also, let 𝐸𝑒,Z = {{Z𝑒,∶ ∶ 𝑢 ∈ 𝑒}} be the multiset
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Figure 2.6: Illustration of the ALLSETS framework. Two-stage message passing applies to the
hypergraph in Figure 2.5. Two multiset functions 𝑓𝑉 →𝐸 and 𝑓𝐸→𝑉 are applied in sequence, both
of which are permutation invariant with respect to the input multisets.

representation of the hyperedges that contain the node 𝑢 where Z ∈ ℝ|ℰ|×𝑓′ is the matrix
of hyperedge features. The AllSet framework has the update equation

z(𝑘+1)
𝑒 = 𝑓𝒱→ℰ(𝑉𝑒,X(𝑡); z(𝑡)

𝑒 ), x(𝑘+1)
𝑢 = 𝑓ℰ→𝒱(𝐸𝑢,Z(𝑡+1); x(𝑡)

𝑢 ) (2.16)

where 𝑓𝒱→ℰ and 𝑓ℰ→𝒱 are arbitrary functions that are permutation invariant over the
first argument. AllSet can be reformulated to distinguish the aggregating node from
𝑉𝑒,X(𝑡), giving the AllSet variant

z(𝑘+1),𝑢
𝑒 = 𝑓𝒱→ℰ(𝑉 (𝑡)

𝑒�𝑢,X; z(𝑡),𝑢
𝑒 ; x(𝑡)

𝑢 ), x(𝑘+1)
𝑢 = 𝑓ℰ→𝒱(𝐸(𝑡+1)

𝑢,Z ; x(𝑡)
𝑢 ) (2.17)

where the last input argument for 𝑓𝒱→ℰ is ommitted unless it is explicitly required. This
framework describes a series of HNNs.

HyperGNN [16] uses clique expansion to convert the hypergraph into a graph and then
applies a standard GCN. The update rule can be defined node-wise as

x(𝑘+1)
𝑢 = 𝜎([ 1

√𝑑𝑢
∑

𝑒∶𝑢∈𝑒

𝑤𝑒
|𝑒| ∑

𝑣∈𝑒

x(𝑘)
𝑣
𝑑𝑣

]Θ(𝑘) + b(𝑘)) (2.18)

where 𝑑𝑢 represents the degree of node 𝑢, 𝑤𝑒 is the predefined weight of a hyperedge
and 𝜎 is non-linear activation function.

HyperGCN [76] uses a non-linear Laplacian to create partial cliques containing the most
disparate nodes in the hyperedge. Its update function is defined node-wise as

x(𝑘+1)
𝑢 = 𝜎([ ∑

𝑒∶𝑢∈𝑒
∑
𝑣∈𝑒

𝑤(𝑘)
𝑢𝑣,𝑒 x(𝑘)

𝑣 ]Θ(𝑘) + b(𝑘)) (2.19)

where the weight 𝑤(𝑡)
𝑢𝑣,𝑒 depends on all of the node features in the hyperedge. Yadati

et al. [76] defined the weights as

𝑤(𝑡)
𝑢𝑣,𝑒 =

⎧{
⎨{⎩

1
2|𝑒|−3 if 𝑢 ∈ {𝑖𝑒, 𝑗𝑒} or 𝑣 ∈ {𝑖𝑒, 𝑗𝑒}
0 otherwise

(2.20)
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where (𝑖𝑒, 𝑗𝑒) = argmax𝑢,𝑣∈𝑒∥(x(𝑘)
𝑢 − x(𝑘)

𝑣 )Θ(𝑘)∥.

HCHA [2] uses attentional scores based on the node-hyperedge similarity to compute a
new incidence matrix. An HCHA layer may be defined node-wise as

x(𝑘+1)
𝑢 = 𝜎([ 1

√𝑑𝑢
∑

𝑒∶𝑢∈𝑒

𝑤𝑒𝛼(𝑘)
𝑢𝑒

|𝑒| ∑
𝑣∈𝑒

𝛼(𝑘)
𝑣𝑒 x(𝑘)

𝑣
𝑑𝑣

]Θ(𝑘) + b(𝑘)). (2.21)

This is identical to a HyperGNN layer apart from the addition of the attention weights
𝛼(𝑡)

𝑢𝑒 and 𝛼(𝑡)
𝑣𝑒 , which are defined as

𝛼𝑢𝑒 = exp(𝜎(a⊺[x𝑢 ‖z𝑒]))
∑𝑒∶𝑢∈𝑒 exp(𝜎(a⊺[x𝑢 ‖z𝑒])) (2.22)

DeepAllSets [10] is more expressive and generalises the abovementioned architectures.
A DeepAllSets layer is defined as the following AllSet layer

𝑓𝒱→ℰ(𝑆) = 𝑓ℰ→𝒱(𝑆) = MLP(∑
𝑠∈𝑆

MLP(𝑠)). (2.23)

DeepSetTransformer [10] improves on DeepAllSets by using an attention-based mech-
anism to learn the relative importance of each contributing term. This is done using a
modified Set Transformer [44] architecture for each multiset function. Further details
on the implementation can be found in Section 4 of Chien et al. [10].

This work extends the general AllSets framework to incorporate the sheaf structure, po-
tentially improving performance on hetereogeneous data.

2.7 Sheaf Hypergraph Neural Networks
Duta et al. [13] lifted Bodnar et al. [6] to the hypergraph domain and introduced two
architectures inspired by HyperGNN [16] and HyperGCN [76], respectively. The sheaf
construction for hypergraphs is similar to Definition 2.2. However, the edge stalks be-
come hyperedge stalks and are instead associated with each hyperedge.

2.7.1 Sheaf hypergraph Laplacians
Duta et al. introduced two novel hypergraph Laplacian constructions: a linear Laplacian
inspired by Feng et al. [16] and a non-linear Laplacian construction extending Yadati et
al. [76]. The key difference is that these constructions incorporate the sheaf structure.

Definition 2.11. The linear sheaf Laplacian over a sheaf hypergraph (ℱ, ℋ) is a positive
semidefinite block matrix with diagonal entries (𝐿ℱ)𝑢𝑢 ≔ ∑𝑒;𝑢∈𝑒

1
𝛿𝑒

ℱ⊤
𝑢⊴𝑒 ℱ𝑢⊴𝑒 and non-
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diagonal entries (𝐿ℱ)𝑢𝑣 ≔ − ∑𝑒;𝑢,𝑣∈𝑒
1
𝛿𝑒

ℱ⊤
𝑢⊴𝑒 ℱ𝑣⊴𝑒.

The linear sheaf Laplacian operator applied to a node 𝑢 on a signal x ∈ ℝ𝑛×𝑑 may be
written as

𝐿ℱ(x)𝑢 ≔ ∑
𝑒;𝑢∈𝑒

ℱ⊤
𝑢⊴𝑒

⎛⎜⎜
⎝

∑
𝑣∈𝑒
𝑣≠𝑢

(ℱ𝑢⊴𝑒 x𝑢 − ℱ𝑣⊴𝑒 x𝑣)⎞⎟⎟
⎠

. (2.24)

Definition 2.12. The non-linear sheaf Laplacian over a sheaf hypergraph (ℱ, ℋ) with
respect to a signal x ∈ ℝ𝑛×𝑑 is defined as:

1. For each hyperedge 𝑒 compute (𝑢𝑒, 𝑣𝑒) ≔ argmax𝑢,𝑣∈𝑒‖ℱ𝑢⊴𝑒 x𝑢 − ℱ𝑣⊴𝑒 x𝑣‖, the set
of node pairs with the most discrepant features in the hyperedge stalk.

2. Build an undirected graph 𝒢𝐻 with the same set of nodes as ℋ where for each
hyperedge 𝑒 the most discrepant nodes (𝑢, 𝑣) are connected (we shall denote this
𝑢 ∼𝑒 𝑣 if they are connected due to the hyper edge 𝑒).

3. Define the non-linear sheaf Laplacian as

𝐿̄ℱ(x)𝑢 ≔ ∑
𝑒;𝑢∼𝑒𝑣

1
𝛿𝑒

ℱ⊤
𝑢⊴𝑒(ℱ𝑢⊴𝑒 x𝑢 − ℱ𝑣⊴𝑒 x𝑣). (2.25)

2.7.2 Sheaf Hypergraph Networks
Given a hypergraph ℋ = (𝒱, ℰ) with a node feature matrix X ∈ ℝ𝑛×𝑓 , we initially project
the input features into X̃ ∈ ℝ𝑛×(𝑑𝑓) and then re-shape into X̃ ∈ ℝ𝑛𝑓×𝑑. As a result, each
node is represented in the vertex stalk as a 𝑑 × 𝑓 matrix where 𝑑 is the stalk dimension
and 𝑓 is the number of input channels. A general Sheaf Hypergraph Network layer is
defined as:

Y ≔ 𝜎((I𝑛𝑑 −Δ̇)(I𝑛 ⊗W1)X̃W2), (2.26)

where Δ̇ can be either Δℱ = 𝐷−1/2𝐿ℱ𝐷−1/2 for the linear sheaf hypergraph laplacian
or Δ̄ℱ = 𝐷−1/2𝐿̄ℱ𝐷−1/2 in the case of the non-linear sheaf hypergraph Laplacian. Both
W1 ∈ ℝ𝑑×𝑑 andW2 ∈ ℝ𝑓×𝑓 are learnable parameters and 𝜎 represents ReLU non-linearity.
From this, we now have two models:

• Sheaf Hypergraph Neural Networks (SheafHyperGNN). This model uses the linear
Laplacian Δ̇ = Δℱ.

• Sheaf Hypergraph Convolutional Network (SheafHyperGCN). This model uses the
non-linear Laplacian Δ̇ = Δ̄ℱ.

Sheaf learning. As with NSD models, the restriction maps can be learnt using a para-
metric function. For each node-hyperedge incidence pair 𝑢 ⊴ 𝑒, the restriction maps are
learnt as ℱ𝑢⊴𝑒 ≔ MLP(x𝑢 ∥ h𝑒) where x𝑢 is the stalk representation of the node 𝑢 and h𝑒
represents the hyperedge 𝑒. As with Bodnar et al., the learnt restriction maps can have
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different properties. Duta et al. explored three types of 𝑑 × 𝑑 block matrices: diagonal,
low-rank, and general matrices.

2.8 Topological deep learning

Simplicial
complex

Cellular
complex

HypergraphCombinatorial
complex Sheaf

hypergraph
Part-whole
relations

Set-type
relations

Traditional discrete domains

Set

No
relations

Graph

Pairwise
relations

: Edges: Nodes is part of is not necessarily part of

Figure 2.7: A taxonomy of topological domains. Adapted from Papillon et al. [53, Fig. 2]

Relational structures can be extended beyond pairwise and set-type relations modelled
by graphs and hypergraphs. Papillon et al. [53] created a taxonomy of possible topo-
logical domains reproduced in Figure 2.7. Simplicial and cellular complexes extend
graphs by constructing multi-scale cells to incorporate a part-whole relationship. In sim-
plicial complexes, these cells must be simplexes with no restrictions for cellular com-
plexes. Combinatorial complexes [26] are the most general topological structure and
can be thought of as a cellular complex with the addition of hyperedges. This is used to
define a general four-stage message passing framework for Topological Neural Networks
(TNNs), and lift GNNs and HNNs to more general topological structures. The methods
presented in this report could be incorporated into this message passing framework, al-
lowing them to be extended to more general topological structures.
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Chapter 3

Related work

This chapter summarises and discusses recent approaches for processing heterogeneous
data. A discussion of homogeneous GNNs is used as a foundation to build up to hetero-
geneous GNN architectures. These techniques are the basis and inspiration for the sheaf
modifications proposed in the next chapter.

3.1 Homogeneous GNNs
Many homogeneous GNN architectures have been proposed [29, 42, 45, 69], all of which
can process a heterogeneous graph simply by ignoring the node and edge types. However,
they struggle due to oversmoothing.

Graph Convolution Network (GCN) [42]. This is one of the first GNN architectures,
with the 𝑙th layer is defined as

H(𝑙) = 𝜎(ÃH(𝑙−1)W(𝑙)), (3.1)

where H(𝑙) is the hidden node representations and the 𝑙th layer, 𝜎 is a non-linear activ-
ation, W(𝑙) is a learnable weight matrix and Ã is the normalised adjacency matrix with
added self loops.

Graph Attention Network (GAT) [69]. Instead of using a linear combination of neigh-
bourhood features, GATs use an attentional mechanism to aggregate neighbourhood fea-
tures similar to multi-head attention [68]. This means that each edge (𝑢, 𝑣) is assigned
a weight 𝛼𝑢𝑣 such that

𝛼𝑢𝑣 ≔ exp(LeakyReLU(a⊤[Whu ∥ Whv]))
∑𝑘∈𝒩𝑢

exp(LeakyReLU(a⊤[Whu ∥ Whk]))
. (3.2)

where W ∈ ℝ𝑓′×𝑓 are learnable weight parameters, a ∈ ℝ2𝑓′ is a weight vector, and ‖
refers to vector concatenation.
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3.2 Heterogeneous GNN architectures

Figure 3.1: Meta-path ensemble heterogeneous GNNs. Illustration of a meta-path ensemble
heterogeneous GNN applied to a heterogeneous graph with three edge types. The graph is split
into a series of subgraphs induced by each edge type, which are fed into a separate GNN. These
representations are then aggregated to generate the final latent representations.

Lv et al. [46] surveyed existing methods to process heterogeneous graphs. These meth-
ods use two techniques: (i) embed the node/relationship type as node or edge features;
and (ii) an ensemble approach (Figure 3.1) based on predefined relationship sequences,
known as meta-paths.

R-GCN [61]. Relational Graph Convolutional Networks (R-GCNs) ensemble GCNs based
on edge types and aggregate the representations using a sum. The hidden representation
at layer 𝑙 + 1 of a node 𝑢 is a modified GCN update defined as

h(𝑙+1)
𝑢 = 𝜎⎛⎜

⎝
∑
𝑡∈𝒯

∑
𝑣∈𝒩𝑡𝑢

1
𝑐𝑢,𝑡

W(𝑙)
𝑡 h(𝑙)

𝑣 + W(𝑙)
0 h(𝑙)

𝑢 ⎞⎟
⎠

, (3.3)

where 𝒩𝑡
𝑢 is the neighbourhood of a node 𝑢 defined by the edge type 𝑡 ∈ 𝒯 and 𝑐𝑢,𝑡 is

a task-specific normalisation constant.

HAN [73]. Heterogeneous Attention Networks (HANs) combine node-level and semantic-
level attention mechanisms. Node-level attention learns the relative importance of neigh-
bouring nodes defined on a meta-path using a self-attention mechanism [68], which is
then used to aggregate the neighbours to give a meta-path based node representation.
An additional attention mechanism is used to aggregate the meta-path based node rep-
resentations during semantic-level attention. So, HANs can be considered an ensemble
of GATs aggregated using an attention mechanism.

HetSANN [35]. Heterogeneous Graph Structural Attention Neural Networks (HetSANNs)
use a type-aware attention layer to directly encode structural and type information in
a graph without explicitly exploiting meta-paths. Unfortunately, the paper provides
neither details of the model hyperparameters nor any necessary preprocessing steps, so
Lv et al. [46] found its performance to be poor.
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HetGNN [80]. Heterogeneous Graph Neural Networks (HetGNNs) use random walks
with restarts to generate neighbourhoods which are then aggregated using BiLSTM [34]
modules inspired from GraphSAGE [28] to generate node features for each type and
across multiple types.

HGT [36]. Heterogeneous Graph Transformers (HGTs) are inspired by transformer ar-
chitectures and operate on a sampled heterogeneous subgraph. This is done in three
steps: (i) Heterogeneous Mutual Attention based on the meta relationships; (ii) Hetero-
geneous Message Passing; and (iii) Target-Specific Aggregation.
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Chapter 4

Heterogeneous sheaf learners

This chapter presents a series of modified sheaf learners that better account for the data’s
heterogeneity. The rest of the sheaf pipeline remains unchanged. The next chapter
builds upon this work by demonstrating the empirical benefit of these modifications
across various heterogeneous benchmarks.

4.1 Sheaves for heterogeneous data
As briefly discussed in the Introduction, even in its most basic form, a sheaf is more
appropriate than standard GNNs to model heterogeneous graphs because the stalks can
become specialised to specific node or edge types. The restriction maps help to learn
common ‘communication tunnels’ between different types or modalities in the data. To
some extent, the experiments in Chapter 5 show this, as over time, the restriction maps
learn to implicitly encode and account for the type information.

4.2 Including type information
Standard sheaf learners (Sheaf-NSD) concatenate just the local features and do not ex-
plicitly account for heterogeneity in the graph or hypergraph. Instead, I wish to adapt
the sheaf construction to explicitly account for the type information, which may better ac-
count for the heterogeneity and improve downstream performance. This work explores
two possible approaches:

1. Embed the type information into the restriction maps as additional features to the
MLP used to learn them.

2. An ensemble approach where a different parametric function is used to learn the
restriction maps for each edge type.
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Figure 4.1 illustrates the proposed sheaf modifications, which demonstrate different
ways to include type information.
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Figure 4.1: Proposed heterogeneous sheaf learners. Each potential sheaf modification demon-
strates a different way to parameterise the restriction maps to include type information. Sheaf-
NSD refers to the standard parameterisation introduced by Bodnar et al. [6] and Sheaf-ensemble
an ensemble approach where a separate MLP is used for each edge type. The remaining ap-
proaches treat the type information as additional features to the MLP.

4.2.1 Embedding type information
The first approach embeds the type information as additional features in the node and
edge feature vectors. As the types are categorical variables and numeric, they are en-
coded as a one-hot vector before they are embedded. The most straightforward approach
is concatenating the one-hot encoded type vectors to the existing feature vectors. Let
𝒢 = (𝒱, ℰ, 𝒮, 𝒯) be a heterogeneous graph, with features x𝑢 ∈ ℝ𝑓 associated with each
node 𝑢, 𝜏𝜏𝜏𝑢 ∈ ℝ|𝒮| be the one-hot encoded node type associated with node 𝑢, 𝜏𝜏𝜏𝑢𝑣 ∈ ℝ|𝒯|

be the one-hot encoded edge type associated with the edge (𝑢, 𝑣) and ‖ denote vector
concatenation.

Sheaf-TE. Naïvely, the simplest approach would be to concatenate all the type informa-
tion and the local features. This leads to the following restriction map formulation

ℱ𝑢⊴𝑒 ≔ MLP(x𝑢 ‖ x𝑣 ‖𝜏𝜏𝜏𝑢‖𝜏𝜏𝜏𝑣‖𝜏𝜏𝜏𝑢𝑣). (4.1)

This formulation’s benefit is that it explicitly accounts for all available type information,
so it should, in theory, be better able to model the heterogeneity in the data than Sheaf-
NSD. However, this approach is computationally wasteful in either node heterogeneity
with edge homogeneity or edge heterogeneity with node homogeneity, as the model
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includes redundant type information that increases the number of training parameters
and could increase the chance of overfitting. This could similarly apply in cases where
the edge type simply encodes the types of connected nodes, as the edge type is redundant
and can be easily inferred from the node types. It may be more sensible to embed only
the salient type information instead of all available type information.

Sheaf-EE. This modifies Sheaf-TE by embedding only the edge type information, giving
restriction maps formulated as

ℱ𝑢⊴𝑒 ≔ MLP(x𝑢 ‖ x𝑣 ‖𝜏𝜏𝜏𝑢𝑣), (4.2)

which provides amore natural formulation when only the graph edges are heterogeneous
and is more efficient in terms of model parameters. The main downside is losing some
generality and flexibility in the final computed sheaf.

Sheaf-NE. Likewise, if the graph is heterogeneous only across its nodes, it is more natural
to embed just the node types. This yields restriction maps formulated as

ℱ𝑢⊴𝑒 ≔ MLP(x𝑢 ‖ x𝑣 ‖𝜏𝜏𝜏𝑢‖𝜏𝜏𝜏𝑣). (4.3)

The benefits and drawbacks of this formulation are identical to those of Sheaf-EE.

Additionally, we may learn restriction maps that include only the type information and
not the local information. This is an interesting case to study for two reasons. First,
it causes the sheaf to learn a message passing mechanism based only on the type in-
formation, so it is somewhat similar to how ensemble-based heterogeneous GNNs learn
a message passing approach based on the edge type. The key difference is that the
communication mechanism is inherent in the underlying topology of the sheaf and not
the final model architecture. Secondly, it can test the relative importance of the type
information compared to the local node features.

Sheaf-types. The natural starting point is to embed all available type information such
that

ℱ𝑢⊴𝑒 ≔ MLP(𝜏𝜏𝜏𝑢‖𝜏𝜏𝜏𝑣‖𝜏𝜏𝜏𝑢𝑣). (4.4)

This approach’s benefits and drawbacks are similar to those of Sheaf-TE, and it requires
substantially fewer parameters than either Sheaf-TE, Sheaf-NE, or Sheaf-EE. This is, of
course, assuming that |𝒮|, |𝒯| << 𝑓 , which is a reasonable assumption in most settings.
The main drawback compared to including the local features is that the learnt sheaf is
likely unable to account for them and will likely perform worse than Sheaf-NSD or any
of the previous approaches. As with Sheaf-TE, Sheaf-types may be modified to account
for setups in which only the nodes or edges are heterogeneous.

Sheaf-ET. This approach is more natural when only the edges of the graphs are hetero-
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geneous and is a modified version of Sheaf-EE. Its restriction maps are defined as

ℱ𝑢⊴𝑒 ≔ MLP(𝜏𝜏𝜏𝑢𝑣). (4.5)

Sheaf-NT. Finally, the restriction maps can include only the node type information,
which may be useful in cases when only the nodes of the graphs are heterogeneous.
The restriction maps are defined as

ℱ𝑢⊴𝑒 ≔ MLP(𝜏𝜏𝜏𝑢‖𝜏𝜏𝜏𝑣). (4.6)

4.2.2 Ensemble-based sheaf learners
The key drawback of the approaches mentioned in the previous section is that the same
MLP is used for different edge types. This implicitly assumes that the same mechanism
generates the restriction maps across each edge type. The benefit of sheaves is that they
can learn a different message passing mechanism for each different node or edge type
through the restriction maps, so the type embedding approaches do not fully exploit this
benefit. Instead, the sheaf should be able to generate the restriction maps for each edge
type using a different mechanism. This may be done using a different MLP for each edge
type.

Sheaf-ensemble. This uses a different MLP for each edge type. More formally, the
restriction maps may be formulated as

ℱ𝑢⊴𝑒 ≔ MLP𝜏𝑒
(x𝑢 ‖ x𝑣) (4.7)

where 𝜏𝑒 is the edge type associated with the edge 𝑒 ≔ (𝑢, 𝑣). This approach may
also be augmented by concatenating the node types. The benefit of this approach is
that a separate generation mechanism is used for each edge type, so it will be more
expressive than reusing the sameMLP across each edge type. However, it has a significant
downside: it causes a substantial increase in the number of model parameters, which
greatly increases the computational overhead in terms of both training time and memory
usage. This could be a major issue with larger datasets, as the size of GPU memory could
make this approach infeasible.

4.3 Lifting to hypergraphs
The constructions above can easily be transferred to hypergraphs by using the node and
hyperedge types instead. Let ℋ = (𝒱, ℰ, 𝒮, 𝒯) be a heterogeneous hypergraph, with
features x𝑢 ∈ ℝ𝑓 associated with each node 𝑢, h𝑒 ∈ ℝ𝑓 be the feature associated with
each hyperedge 𝑒, 𝜏𝜏𝜏𝑢 ∈ ℝ|𝒮| be the one-hot encoded node type associated with node 𝑢,
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𝜏𝜏𝜏𝑒 ∈ ℝ|𝒯| be the one-hot encoded edge type associated with the hyperedge 𝑒. The type
concatenation becomes

ℱ𝑢⊴𝑒 ≔ MLP(x𝑢 ‖h𝑒 ‖𝜏𝜏𝜏𝑢‖𝜏𝜏𝜏𝑒), (4.8)

whilst the ensemble approach becomes

ℱ𝑢⊴𝑒 ≔ MLP𝜏𝑒
(x𝑢 ‖h𝑒). (4.9)

The other constructions proposed above may be lifted in a similar way, but they are not
included for the sake of conciseness.

Computing the hyperedge features. Each proposed sheaf modification depends on the
hyperedge features h𝑒. Sometimes, these features are included as part of the dataset. If
not, they may be computed in one of two ways:

1. Take a series of pre-computed hyperedge features as input into the model. A pos-
sible approach is to run node2vec [24] over the hypergraph incidence graph to
generate the initial node and hyperedge features.

2. Inferring the hyperedge features based on aggregating the incident node features.
This work uses the following approaches:

(a) Permutation invariant aggregation of the node features such that h𝑒 = ⨁𝑢∈𝑒 x𝑢.

(b) Similar to Wang et al. [72], h𝑒 = ⨁𝑢∈𝑒 MLP(x𝑢). This has the added benefit
of universally approximating all permutation equivariant hyperedge repres-
entations based on neighbourhood aggregation.

(c) Tensor decomposition pooling [37] based on CP decomposition [33] used for
tensor rank decomposition. It is defined as

h𝑒 = 𝜎′(M𝜎(W⊺ [x𝑢1

1 ] ⊙ ⋯ ⊙ [x𝑢𝑘

1 ]))

where 𝜎′ = ReLU and 𝜎 = tanh.

4.4 Computational complexity
Table 4.1 gives the complexities for each proposed sheaf modification derived following
Appendix E.1 of Bodnar et al. [6]. For 1 ⩽ 𝑑 ⩽ 5 and a heterogeneous graph with a
small number of node and edge types, there is an effectively constant overhead com-
pared to GCNs and other homogeneous architectures. So, the increase in computational
complexity is negligible.
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Table 4.1: Computational complexities of heterogeneous sheaf learners. Here I assume a
heterogeneous graph with 𝑛 nodes, 𝑚 edges, 𝑠 node types and 𝑡 edge types and a sheaf diffusion
model with stalk dimension 𝑑 and 𝑓 channels such that 𝑐 = 𝑑 × 𝑓 . Diagonal restriction maps are
denoted by ‘(diag)’, and general or orthogonal restriction maps are denoted by ‘(non-diag)’. For
the non-sheaf architectures, 𝑐 = 𝑓 and ℎ is the number of attention heads used by HAN or GAT.

Computational complexity
GCN 𝒪(𝑛𝑐2 + 𝑚𝑐)
GAT 𝒪(𝑛𝑐2ℎ + 𝑚𝑐ℎ)
HAN 𝒪(𝑡𝑛𝑐2ℎ + 𝑡𝑚𝑐ℎ)
Sheaf-NSD (diag) 𝒪(𝑛𝑐2 + 𝑚𝑑𝑐)
Sheaf-NSD (non-diag) 𝒪(𝑛(𝑐2 + 𝑑3) + 𝑚𝑑2(𝑐 + 𝑑))
Sheaf-TE (diag) 𝒪(𝑛𝑐2 + 𝑚𝑑(𝑐 + 𝑠 + 𝑡))
Sheaf-TE (non-diag) 𝒪(𝑛(𝑐2 + 𝑑3) + 𝑚𝑑2(𝑐 + 𝑠 + 𝑡 + 𝑑))
Sheaf-NE (diag) 𝒪(𝑛𝑐2 + 𝑚𝑑(𝑐 + 𝑠))
Sheaf-NE (non-diag) 𝒪(𝑛(𝑐2 + 𝑑3) + 𝑚𝑑2(𝑐 + 𝑠 + 𝑑))
Sheaf-EE (diag) 𝒪(𝑛𝑐+𝑚𝑑(𝑐 + 𝑡))
Sheaf-EE (non-diag) 𝒪(𝑛(𝑐2 + 𝑑3) + 𝑚𝑑2(𝑐 + 𝑡 + 𝑑))
Sheaf-types (diag) 𝒪(𝑛𝑐2 + 𝑚𝑑(𝑠 + 𝑡))
Sheaf-types (non-diag) 𝒪(𝑛(𝑐2 + 𝑑3) + 𝑚𝑑2(𝑠 + 𝑡))
Sheaf-NT (diag) 𝒪(𝑛𝑐2 + 𝑚𝑑𝑠)
Sheaf-NT (non-diag) 𝒪(𝑛(𝑐2 + 𝑑3) + 𝑚𝑑2𝑠)
Sheaf-ET (diag) 𝒪(𝑛𝑐2 + 𝑚𝑑𝑡)
Sheaf-ET (non-diag) 𝒪(𝑛(𝑐2 + 𝑑3) + 𝑚𝑑2𝑡)
Sheaf-ensemble (diag) 𝒪(𝑛𝑐2 + 𝑚𝑑𝑐𝑡)
Sheaf-ensemble (non-diag) 𝒪(𝑛(𝑐2 + 𝑑3) + 𝑚𝑑2(𝑐 + 𝑑𝑡))
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Chapter summary. This chapter introduced a series of novel sheaf learners that
modify the sheaf to explicitly account for the different types. These proposed
modifications incur limited computational overhead compared to standard sheaf
diffusion and existing heterogeneous architectures. In the next chapter, the sheaf
learners are tested on various heterogeneous tasks to explore their potential per-
formance benefits.
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Chapter 5

Experimental results

This chapter presents a series of experiments that explore the performance of sheaf-
based architectures on heterogeneous graph and hypergraph tasks. The following tasks
are used: (i) heterogeneous node classification; (ii) heterogeneous link prediction; and
(iii) prediction of drug-target interactions using heterogeneous hypergraphs. These aim
to answer the following research questions:

1. How well do sheaf-based architectures perform compared to baseline meth-
ods? Previous chapters have discussed the theoretical benefits of sheaf-based archi-
tectures for processing heterogeneous data compared to homogeneous GNNs. It is
important to empirically verify whether this benefit exists on a series of benchmark
datasets and to demonstrate the feasibility of the approach.

2. Do the sheaf restriction maps implicitly encode edge type information? The
previous chapter theorised that sheaves can learn specialisedmessage passingmech-
anisms between different types in the data. It is useful to verify this by exploring
how the restriction maps of an unmodified NSD architecture change during the
training process.

3. Does embedding type information in the restriction maps improve perform-
ance? The sheaf learners proposed in Chapter 4 explicitly account for the het-
erogeneity in the data and may allow the restriction maps to encode type-specific
communication mechanisms. This can be empirically validated by comparing the
performance of the heterogeneous sheaf learners with a standard sheaf that only
concatenates the local feature information.

Each experiment was performed 10 times, with the average and standard deviation re-
ported for each model and dataset pair. All models were implemented using PyTorch
Geometric [17] and were ran on a single NVIDIA A100 with 80GB of GPU memory. The
model’s hyperparameters were obtained for each architecture using a random search per-
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formed using Weight & Biases sweeps1 with the best parameters selected. Each model
was trained for 200 epochs with early stopping to avoid overfitting.

5.1 Heterogeneous node classification
Datasets. I use the following benchmark datasets from the Heterogeneous Graph Bench-
mark (HGB) [46] node classification tasks: DBLP, IMDB and ACM. Table 5.1 provides
dataset summary statistics, and Appendix A provides a more detailed description of each
dataset due to space constraints.

Table 5.1: Dataset statistics for heterogeneous node classification datasets

# nodes # node types # edges # edge types # classes Task
type

ACM 10924 4 547872 8 3 multi-class
DBLP 26128 4 239566 6 4 multi-class
IMDB 21420 4 86642 6 5 multi-label

Data splitting. The target node labels were split with 1000 labels for testing, 500 for
validation, and the remaining for training.

Downstream decoder and loss function. After the GNN processes the graph, the final
node embeddings are fed into an MLP to generate the final classification logits. For
multiclass tasks, I use a softmax activation with cross-entropy loss, and for multilabel
classification, I use a sigmoid activation with binary cross-entropy loss.

Baseline architectures. I use the standard NSD architecture with the heterogeneous
sheaf learners (including the default sheaf learner) introduced in Chapter 4. They were
compared against GCN, GAT, R-GCN, HAN and HGT.

Evaluation metrics. The average and standard deviation of macro- and micro-averaged
F1 scores over 10 runs were reported for each model and dataset pair.

5.1.1 Results
Comparison with existing methods. Table 5.2 shows the results of the heterogeneous
node classification tasks compared to various baseline architectures. The models achieve
competitive results across all datasets and achieve state-of-the-art performance on both
ACM and DBLP. This demonstrates the power of sheaf GNNs when processing heterogen-
eous data. Furthermore, all the sheaf modifications perform better than the standard
local concatenation sheaf learners used by NSD, demonstrating that these modifications
are useful for processing heterogeneous data.

1https://wandb.ai/
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Table 5.2: Performance on heterogeneous node classification. Results of the heterogeneous
sheaf learners and baselines from the literature are shown. The average macro and micro F1
score and standard deviation after 10 runs. The top three models are coloured by First, Second
and Third.

ACM DBLP IMDB

Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1

GAT 75.8 ± 10.7 77.91 ± 8.66 95.47 ± 0.44 95.70 ± 0.42 84.12 ± 0.96 85.31 ± 0.92
GCN 89.09 ± 3.66 89.14 ± 3.60 96.31 ± 0.73 96.57 ± 0.63 82.41 ± 1.15 83.99 ± 0.92
HAN 86.95 ± 6.19 86.64 ± 6.43 94.74 ± 0.81 95.01 ± 0.73 13.53 ± 0.24 38.70 ± 1.13
R-GCN 95.81 ± 0.39 95.75 ± 0.39 96.79 ± 0.39 97.01 ± 0.34 88.16 ± 0.67 89.08 ± 0.63
HGT 93.24 ± 3.19 93.30 ± 2.91 93.91 ± 1.08 94.26 ± 1.09 87.74 ± 0.76 88.45 ± 0.71
Sheaf-NSD 94.97 ± 0.41 94.94 ± 0.42 96.69 ± 0.82 96.89 ± 0.79 86.70 ± 0.90 87.50 ± 0.78
Sheaf-TE (ours) 96.11 ± 0.49 96.09 ± 0.51 97.93 ± 0.36 98.08 ± 0.31 86.85 ± 0.81 87.67 ± 0.80
Sheaf-ensemble (ours) 96.16 ± 0.52 96.12 ± 0.54 97.46 ± 0.64 97.62 ± 0.60 86.92 ± 1.10 87.79 ± 0.95
Sheaf-NE (ours) 96.13 ± 0.39 96.09 ± 0.38 97.68 ± 0.55 97.83 ± 0.51 86.87 ± 1.01 87.73 ± 0.81
Sheaf-EE (ours) 96.39 ± 0.37 96.35 ± 0.36 97.57 ± 0.69 97.73 ± 0.62 87.12 ± 0.75 87.88 ± 0.67
Sheaf-NT (ours) 96.12 ± 0.36 96.12 ± 0.32 97.88 ± 0.47 98.04 ± 0.43 86.92 ± 0.95 87.76 ± 0.85
Sheaf-ET (ours) 95.84 ± 0.65 95.82 ± 0.65 97.69 ± 0.47 97.83 ± 0.47 86.12 ± 0.82 87.05 ± 0.69

Impact of restriction maps. Table 5.3 shows the impact of the restriction map type on
each sheaf model’s performance. Across the board, general restriction maps perform the
best, with orthogonal restriction maps performing the worst. This is despite the theor-
etical benefits of orthogonal restriction maps because of their connection with parallel
transport. The most likely reason for better performance with general restriction maps
is that they are more expressive and can encode more complex interactions in the edge
stalks compared to the other methods. The poor performance of orthogonal restriction
maps is due to the transformations they represent not being sufficiently complex enough
to encode the structure and interactions in the graph datasets. Interestingly, this is in
contrast to Bodnar et al. [6], which found that orthogonal restriction maps performed
better on their datasets. This suggests that the best restriction map properties depend
on the particular task.

For sheaves with a fixed stalk dimension 𝑑, the restriction map properties themselves
encode an implicit bias about how neighbourhood features are aggregated:

• Diagonal restriction maps assume that a node’s value is based on the weighted
combination of its neighbours.

• Orthogonal restriction maps assume that the value of a node is defined by the sum
of its neighbours. The intuition for this comes from the connection between 𝑂(𝑑)
bundles and parallel transport.

• General restriction maps do not encode any assumptions about the aggregation
strategy.

Impact of type information. As mentioned above, all proposed sheaf learners outper-
form the standard NSD model. This suggests that the type information encodes vi-
tal information required for heterogeneous tasks; it is also visible in the performance
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Table 5.3: Ablation study of the impact of different restriction map types. The highest per-
forming restriction map type is highlighted for each dataset and sheaf learner.

ACM DBLP IMDB

Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1

O(d)-NSD 94.64 ± 1.02 94.59 ± 1.03 96.32 ± 0.46 96.55 ± 0.42 86.35 ± 1.29 87.20 ± 1.07
Diag-NSD 94.42 ± 0.51 94.42 ± 0.48 95.25 ± 0.70 95.52 ± 0.67 86.36 ± 0.94 87.26 ± 0.78
Gen-NSD 94.97 ± 0.41 94.94 ± 0.42 96.69 ± 0.82 96.89 ± 0.79 86.70 ± 0.90 87.50 ± 0.78
O(d)-TE 95.04 ± 0.73 95.00 ± 0.76 96.13 ± 0.74 96.37 ± 0.73 86.32 ± 0.90 87.09 ± 0.68
Diag-TE 95.74 ± 0.86 95.74 ± 0.83 97.16 ± 0.64 97.36 ± 0.62 86.32 ± 0.71 87.07 ± 0.61
Gen-TE 96.11 ± 0.49 96.09 ± 0.51 97.93 ± 0.36 98.08 ± 0.31 86.85 ± 0.81 87.67 ± 0.80
O(d)-ensemble 94.99 ± 1.23 95.00 ± 1.21 96.31 ± 0.63 96.52 ± 0.59 86.16 ± 0.71 87.03 ± 0.62
Diag-ensemble 95.89 ± 0.68 95.89 ± 0.67 96.92 ± 0.91 97.09 ± 0.89 86.62 ± 0.91 87.45 ± 0.82
Gen-ensemble 96.16 ± 0.52 96.12 ± 0.54 97.46 ± 0.64 97.62 ± 0.60 86.92 ± 1.10 87.79 ± 0.95
O(d)-NE 94.65 ± 0.99 94.64 ± 0.96 96.55 ± 0.56 96.69 ± 0.54 86.38 ± 0.93 87.11 ± 1.02
Diag-NE 94.94 ± 0.60 94.90 ± 0.59 97.01 ± 0.71 97.22 ± 0.67 86.87 ± 1.01 87.73 ± 0.81
Gen-NE 96.13 ± 0.39 96.09 ± 0.38 97.68 ± 0.55 97.83 ± 0.51 86.54 ± 0.71 87.46 ± 0.74
O(d)-EE 95.00 ± 0.80 95.00 ± 0.79 96.51 ± 0.64 96.73 ± 0.56 87.12 ± 0.75 87.88 ± 0.67
Diag-EE 95.09 ± 0.51 95.05 ± 0.51 96.86 ± 0.47 97.07 ± 0.47 85.99 ± 0.63 86.85 ± 0.58
Gen-EE 96.39 ± 0.37 96.35 ± 0.36 97.57 ± 0.69 97.73 ± 0.62 86.60 ± 0.93 87.51 ± 0.92
O(d)-NT 94.30 ± 1.10 94.28 ± 1.12 96.63 ± 0.44 96.78 ± 0.42 86.35 ± 1.04 87.26 ± 0.94
Diag-NT 94.98 ± 0.58 94.96 ± 0.60 96.96 ± 0.41 97.11 ± 0.36 85.85 ± 1.07 86.78 ± 0.91
Gen-NT 96.12 ± 0.36 96.12 ± 0.32 97.88 ± 0.47 98.04 ± 0.43 86.92 ± 0.95 87.76 ± 0.85
O(d)-ET 94.37 ± 1.35 94.32 ± 1.37 96.15 ± 0.46 96.33 ± 0.46 85.92 ± 0.68 87.01 ± 0.57
Diag-ET 95.44 ± 0.37 95.40 ± 0.38 97.34 ± 0.56 97.55 ± 0.49 85.96 ± 0.74 86.90 ± 0.69
Gen-ET 95.84 ± 0.65 95.82 ± 0.65 97.69 ± 0.47 97.83 ± 0.47 86.12 ± 0.82 87.05 ± 0.69

gap between the homogeneous and heterogeneous GNNs. For these particular datasets,
Table 5.2 suggests that the type information is more informative than the node features,
such as sheaves that learn the restriction maps using just the type information (Sheaf-NT
and Sheaf-ET), and none of the local features perform better than those using just the
local features (Sheaf-NSD).

Do restriction maps encode edge types? To explore the learnt restriction maps, I
performed linear probing [66, 70] to see if they learn to encode the edge type. This
was done by feeding the restriction maps of an unmodified NSD model into a simple
linear classifier to classify the type of edge to which the stalk is attached. The results
are shown in Figure 5.1 with the classifier accuracy plotted as a function of the number
of training steps. As training progresses, the classifier accuracy increases; however, the
accuracy is around 30% to 45%, suggesting that embeddings are poor in terms of their
representation and encoding of the edge type information.

Computational overhead. Table 5.4 shows the sheaf modifications’ average run time
and model size compared to baseline architectures. The runtime is provided for com-
pleteness and to give an indication of the computational requirements of the models.
However, it is important to note that the sheaf architectures were implemented by ad-
apting the original NSD implementation [6]. So, the sheaf implementations could be
more computationally efficient, while the baseline implementations are from PyG [17]
and are substantially more optimised. The baseline architectures that performed best
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Figure 5.1: Linear probing of the learnt restriction maps based on edge types. The plots
show the performance of a linear classifier that predicts the edge types from the learnt restriction
maps of a NSD model. During the training process, the accuracy of the classifier increases, which
suggests that they implicitly learn to encode the edge types.

across all datasets were HGT and R-GCN, with the largest sheaf architecture (Sheaf-
ensemble) being, on average, 111x smaller than R-GCN and 17x smaller than HGT in
terms of the number of model parameters across all datasets. This demonstrates the be-
nefit of these sheaves as they either exceed or perform similarly to existing approaches
with a substantially smaller model architecture and reduced memory overhead.
Table 5.4: Computational overhead of sheaf learners. The baseline architectures with the
highest performance are highlighted.

ACM DBLP IMDB

Runtime (s) # params Runtime (s) # params Runtime (s) # params

GAT 111.1 8.6M 32.5 13.4M 22.7 11.9M
GCN 17.9 619K 10.4 1.2M 7.9 1.0M
HAN 28.9 2.2M 18.5 1.9M 15.8 3.4M
R-GCN 22.1 43M 30.3 87.8M 25.9 72.1M
HGT 1025.8 7.2M 648.3 6.2M 939.9 10.5M
Sheaf-NSD 47.6 155K 73.3 1.7M 40.5 1.6M
Sheaf-TE (ours) 44.7 155K 79.1 1.7M 40.1 1.6M
Sheaf-ensemble (ours) 55.7 174K 83.2 1.8M 44.9 1.9M
Sheaf-NE (ours) 47.3 155K 89.6 1.7M 12.0 1.1M
Sheaf-EE (ours) 49.6 155K 85.9 1.7M 41.8 1.6M
Sheaf-NT (ours) 42.0 154K 82.4 1.7M 38.6 1.6M
Sheaf-ET (ours) 45.1 154K 80.5 1.7M 39.8 1.6M

5.2 Heterogeneous link prediction
Datasets. The following link prediction datasets from HGB were formulated as a binary
classification task: LastFM [18] and MovieLens2. Table 5.5 provides dataset summary
statistics, and Appendix A provides a more detailed description of each dataset due to
space constraints.

2https://movielens.org/
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Table 5.5: Dataset statistics for heterogeneous link prediction datasets

# nodes # node types # edges # edge types # classes

MovieLens 10 352 2 201672 2 1
LastFM 20612 3 378382 9 1

Data splitting. To prevent test leakage, a random link split was performed on the dataset,
which converts the original graph into a separate train, validation and test graph with
70% of edges used for training, 10% for validation and 20% for testing.

Downstream decoder and loss function. For each node pair 𝑢, 𝑣 and relation type 𝑟,
the model outputs the score

𝑃(𝑢 ∼𝑟 𝑣) = 𝜎(MLP(x𝑢 ‖ x𝑣)) (5.1)

which gives the probability that 𝑢 and 𝑣 are connected by a relation of type 𝑟. I employ
the Bayesian Personalised Ranking (BPR) loss [32, 56] to encourage the prediction of
observed edge to be higher than an unobserved one:

ℓBPR = −
|𝑉 |
∑
𝑢=1

∑
𝑖∈𝒩𝑢

∑
𝑗∉𝒩𝑢

ln𝜎( ̂y𝑖 − ̂y𝑗) + 𝜆‖Θ‖2
2 (5.2)

where Θ is the model parameters and is a regularisation term.

Baseline architectures. The baseline architectures and setup are identical to the het-
erogeneous node classification results.

Evaluation metrics. Each experiment was run 10 times, and the average and standard
deviation of the AUROC and AUPR were reported for each model and dataset.

5.2.1 Results
Comparison to baseline methods. Table 5.6 shows the results of the heterogeneous
sheaf learners in the heterogeneous link prediction tasks. Here, the sheaf architectures
outperform the baseline architectures across both datasets, demonstrating the benefit of
sheaves for heterogeneous tasks. All but one of the models perform significantly worse
in the LastFM dataset than MovieLens, with the biggest performance gap with GAT of
around 47%. This is likely because the LastFM graph is almost double the size and has
more node and edge types than MovieLens. The performance could be improved by
increasing the number of training epochs.

Just as in Table 5.2, HAN substantially underperforms on both datasets with a 14% lower
performance on LastFM and a 33% lower performance on MovieLens, and interestingly,
in contrast to the other architectures, performs better on LastFM than MovieLens. This
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Table 5.6: Performance on heterogeneous link prediction benchmarks. Results for the het-
erogeneous sheaf learners and baselines are shown. The table shows the average and standard
deviation of the binary AUROC and AUPR scores after 10 runs with the top three models, col-
oured First, Second and Third. The runs labelled ‘–’ were caused by an out-of-memory error of
the GPU.

LastFM MovieLens

AUPR AUROC AUPR AUROC

GAT 62.88 ± 0.18 50.69 ± 0.63 97.06 ± 0.24 97.47 ± 0.21
GCN 96.84 ± 0.10 96.42 ± 0.08 99.57 ± 0.03 99.51 ± 0.03
HAN 82.48 ± 3.86 78.47 ± 3.04 63.49 ± 0.14 52.06 ± 0.27
R-GCN 96.86 ± 0.07 96.97 ± 0.05 99.06 ± 0.05 99.13 ± 0.04
HGT – – – –
Sheaf-NSD 97.16 ± 0.19 96.58 ± 0.18 99.66 ± 0.04 99.57 ± 0.03
Sheaf-TE (ours) 97.71 ± 0.52 97.23 ± 0.63 99.65 ± 0.03 99.57 ± 0.04
Sheaf-ensemble (ours) 98.21 ± 0.15 97.71 ± 0.18 99.68 ± 0.04 99.59 ± 0.04
Sheaf-NE (ours) 97.90 ± 0.68 97.51 ± 0.51 99.66 ± 0.04 99.57 ± 0.04
Sheaf-EE (ours) 97.51 ± 0.44 96.91 ± 0.52 99.67 ± 0.05 99.57 ± 0.05
Sheaf-NT (ours) 98.24 ± 0.13 97.80 ± 0.18 99.61 ± 0.03 99.52 ± 0.03
Sheaf-ET (ours) 97.84 ± 0.32 97.26 ± 0.03 99.64 ± 0.03 99.54 ± 0.03

is likely because of the ensemble approach HAN uses, which increases the number of
model parameters, so more data points and training epochs are required to ensure the
model sufficiently converges.

Impact of the sheaf learner. In both datasets, the heterogeneous sheaf learners perform
comparably or just as well as the base NSD implementation. In LastFM, they perform bet-
ter than NSD, and on MovieLens embedding, just the type information performs 0.02%
to 0.05% lower than NSD. This again illustrates the importance of the type information,
which appears to be more informative than the local features. Interestingly, Sheaf-NT,
which uses just the node type information to encode the restriction maps, performs the
best on LastFM. This is likely an artefact of the dataset as each edge type is type specific.
That is, they only connect nodes of certain types. As we attempt to predict the edges
of a certain type, it is natural that including only the node type information performs
the best, as the model must only learn which node types define that edge type. A more
interesting test could use a dataset in which an edge type may connect different node
types.

Effect of restriction map types. Table 5.7 shows the effect of each restriction map
type on the performance of the sheaf architecture. Unlike the node classification results
above, the restriction maps appear to have a much smaller effect on the overall model
performance. Aligning with both Bodnar et al. [6] and Duta et al. [13], the diagonal
restrictionmaps performwell on the NSD architecture. The results for the heterogeneous
sheaf learners are more mixed, but in general, the general restriction maps seem to
perform slightly better than either diagonal or orthogonal restriction maps. However,
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this difference is 0.5% compared to the performance gap of 1% to 2% observed with
general restriction maps for node classification.

Table 5.7: Restriction map ablation study for heterogeneous link prediction. The highest
performing restriction map type for each sheaf learner and dataset is highlighted.

LastFM MovieLens

AUPR AUROC AUPR AUROC

O(d)-NSD 96.91 ± 0.02 96.35 ± 0.21 99.62 ± 0.06 99.52 ± 0.05
Diag-NSD 97.16 ± 0.19 96.58 ± 0.18 99.66 ± 0.04 99.57 ± 0.03
Gen-NSD 97.01 ± 0.13 96.44 ± 0.18 99.66 ± 0.06 99.55 ± 0.07
O(d)-TE (ours) 97.70 ± 0.61 97.23 ± 0.63 99.58 ± 0.05 99.49 ± 0.06
Diag-TE (ours) 97.70 ± 0.55 97.21 ± 0.64 99.63 ± 0.08 99.53 ± 0.08
Gen-TE (ours) 97.71 ± 0.52 97.17 ± 0.55 99.65 ± 0.03 99.57 ± 0.04
O(d)-ensemble (ours) 97.15 ± 0.11 96.46 ± 0.13 99.61 ± 0.08 99.51 ± 0.08
Diag-ensemble (ours) 97.93 ± 0.25 97.35 ± 0.28 99.68 ± 0.04 99.59 ± 0.04
Gen-ensemble (ours) 98.21 ± 0.15 97.71 ± 0.18 99.66 ± 0.06 99.57 ± 0.05
O(d)-NE (ours) 97.90 ± 0.68 97.43 ± 0.07 99.62 ± 0.05 99.52 ± 0.04
Diag-NE (ours) 97.62 ± 0.51 97.13 ± 0.53 99.66 ± 0.05 99.56 ± 0.06
Gen-NE (ours) 98.00 ± 0.46 97.51 ± 0.51 99.66 ± 0.04 99.57 ± 0.04
O(d)-EE (ours) 96.98 ± 0.17 96.42 ± 0.17 99.59 ± 0.07 99.50 ± 0.06
Diag-EE (ours) 97.40 ± 0.49 96.84 ± 0.52 99.67 ± 0.05 99.57 ± 0.05
Gen-EE (ours) 97.51 ± 0.44 96.91 ± 0.52 99.63 ± 0.05 99.51 ± 0.06
O(d)-NT (ours) 98.24 ± 0.13 97.80 ± 0.18 99.61 ± 0.03 99.52 ± 0.03
Diag-NT (ours) 97.87 ± 0.36 97.50 ± 0.39 99.60 ± 0.05 99.51 ± 0.05
Gen-NT (ours) 98.15 ± 0.19 97.69 ± 0.25 99.61 ± 0.06 99.52 ± 0.06
O(d)-ET (ours) 96.80 ± 0.29 96.26 ± 0.24 99.56 ± 0.05 99.45 ± 0.04
Diag-ET (ours) 97.70 ± 0.19 97.16 ± 0.18 99.62 ± 0.06 99.54 ± 0.05
Gen-ET (ours) 97.84 ± 0.32 97.26 ± 0.30 99.64 ± 0.03 99.54 ± 0.03

5.3 Heterogeneous drug-target interaction prediction
Datasets. There are few examples of heterogeneous hypergraph datasets. I decided
to use drug-target interaction (DTI) data used by Ruan et al. [59] to predict possible
interactions between a drug and possible biomolecular targets, in this case, proteins or
genes. I make use of the following medical datasets: DeepDTNet [79] and KEGG [51]
Table 5.8 provides dataset summary statistics, and Appendix A provides a more detailed
description of each dataset due to space constraints.

Data pre-processing. Each DTI dataset consists of three hypergraph incidence matrices:
(i) a drug-target incidence matrix; (ii) a drug-disease incidence matrix; and (iii) a dis-
ease-target incidence matrix. The data is preprocessed to generate a heterogeneous
hypergraph using the following steps:
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Table 5.8: Dataset statistics for heterogeneous DTI datasets

# nodes # node types # hyperedges # edge types # classes

KEGG 5589 3 11177 6 1
DeepDTNet 3087 3 6147 6 1

1. Combine the incidence maps (and their transpose) to create a single heterogeneous
hypergraph.

2. Generate the initial node and hyperedge feature vectors with dimensionality 128 by
applying node2vec [24] over the incidence graph of the heterogeneous hypergraph.

This yields a heterogeneous hypergraph with 3 node types and 6 hyperedge types. The
labels are given as a positive edge index, where each pair indicates an interaction. A
70/10/20 train-test split was performed to generate the training, validation, and test
datasets. During each epoch, negative sampling was used to generate negative examples
to assist the training project and to prevent a class imbalance.

Downstream decoder and loss function. The final embeddings of the nodes x𝑑, x𝑡 are
extracted for a given drug-target pair (𝑑, 𝑡) and a score is calculated in the same way as
the prediction of heterogeneous links. The loss function is binary cross entropy.

Baseline architectures. The heterogeneous sheaf learners were tested using a SheafHy-
perGNN and then compared with existing methods: HGNN [16], HCHA [2], DeepAll-
Sets [10] and AllSetsTransformer [10].

Evaluation metrics. The mean and standard deviation of the AUROC and AUPR over
10 runs are reported for each model and dataset.

5.3.1 Results
Comparison against baselines. Table 5.9 shows the results of the sheaf learners on the
heterogeneous DTI prediction datasets compared to various baseline architectures from
the literature. The results are competitive across both datasets, performing third best
on DeepDTNet and second best on KEGG. As with the results of node classification and
link prediction, including type information in restriction maps improves the performance
of the SheafHyperGNN and demonstrates the importance of this type information. The
performance gap between the sheaf architectures and AllSetsTransformer is likely due
to it being more expressive than SheafHyperGNN as it is a universal approximate of the
AllSet framework, which a SheafHyperGNN is a special case of. However, we may have
seen a better performance in SheafHyperGNN if the model had been trained for more
epochs and the parameters had been hyperparameter-tuned for longer. This was not
possible with the available compute resources.

Impact of restriction map types Table 5.10 demonstrates the impact of the type of re-
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Table 5.9: Performance on heterogeneous DTI prediction benchmarks. Results for the sheaf
learners and baselines from the literature are shown. The average AUROC and AUPR and stand-
ard deviation after 10 runs. The top three models are coloured by First, Second and Third.

DeepDTNet KEGG

AUPR AUROC AUPR AUROC

AllDeepSets 91.32 ± 2.07 92.36 ± 1.39 88.46 ± 1.05 92.40 ± 0.64
AllSetsTransformer 93.23 ± 0.63 93.88 ± 0.42 92.60 ± 0.45 94.89 ± 0.19
HCHA 82.57 ± 2.10 85.96 ± 1.26 86.92 ± 0.70 88.68 ± 0.55
HGNN 93.18 ± 0.61 94.58 ± 0.48 91.70 ± 0.58 94.25 ± 0.35
SheafHyperGNN 92.12 ± 0.28 92.36 ± 0.27 92.13 ± 0.43 94.21 ± 0.23
SheafHyperGNN-TE (ours) 92.46 ± 0.48 92.51 ± 0.39 92.48 ± 0.77 94.34 ± 0.04
SheafHyperGNN-ensemble (ours) 92.29 ± 0.46 92.34 ± 0.56 92.25 ± 0.49 94.27 ± 0.38

striction map used on the final model performance. Overall, the restriction map types
significantly impact the model’s performance and the impact is substantially greater
than the link prediction results. Due to DeepDTNet’s size, only the diagonal restric-
tion maps could be run without causing a GPU memory error. Given a sufficiently large
GPU, the DeepDTNet results would be expected to follow the trend of KEGG. On KEGG,
SheafHyperGNN-TE performs the best with general restriction maps, which align with
the graph-based experiments. This is likely because the general restrictionmaps aremore
expressive and can better account for the interactions between nodes in the hyperedge
stalks. However, SheafHyperGNN performs best with low-rank restriction maps. A pos-
sible reason is that low-rank restriction maps are more efficient in terms of parameters
compared to general restriction maps, so they may be easier to optimise in this particular
set-up.

Table 5.10: Restriction map ablation study for heterogeneous DTI prediction. Here ‘Diag’
refers to diagonal restriction maps, ‘Gen’ are general restriction maps, ‘LR’ are low-rank restric-
tion maps and ‘O(d)’ denotes orthogonal restriction maps. Runs denoted by ‘–’ indicate a GPU
memory error. The highest performing restriction map type for each sheaf learner and dataset is
highlighted.

DeepDTNet KEGG
AUPR AUROC AUPR AUROC

Diag-SheafHyperGNN 80.91 ± 0.62 74.50 ± 0.74 70.85 ± 0.81 64.03 ± 0.82
Gen-SheafHyperGNN – – 72.47 ± 0.63 64.99 ± 0.70
LR-SheafHyperGNN – – 72.81 ± 0.53 65.63 ± 0.63
O(d)-SheafHyperGNN – – 72.45 ± 0.44 65.22 ± 0.48
Diag-SheafHyperGNN-TE 80.62 ± 0.65 74.44 ± 0.77 70.54 ± 0.63 63.85 ± 0.74
Gen-SheafHyperGNN-TE – – 72.87 ± 0.50 65.66 ± 0.56
LR-SheafHyperGNN-TE – – 72.63 ± 0.48 65.33 ± 0.63
O(d)-SheafHyperGNN-TE – – 72.34 ± 0.78 65.16 ± 0.68

Impact of hyperedge features. Table 5.11 shows the effect of different methods of
computing the hyperedge features. The method used has limited impact compared to

45



changing restriction map types with only a 1% gap in performance between all methods
compared to a 2% gap between the different restriction map types. Across both data-
sets, the highest performing feature computation method is ‘var3’, which computed the
hyperedge features like Wang et al. [72] or h𝑒 = ∑𝑢∈𝑒 MLP(x𝑢). A likely reason for this
is that this is the most expressive of the proposed computation method as it universally
approximates all possible equivariant hyperedge features.

Table 5.11: Impact of hyperedge feature types on model performance. Here ‘var1’ uses the
input hypergraph features generated by node2vec, ‘var2’ takes a mean of the representations of
the incident nodes, ‘var3’ aggregates the incidence nodes using an equivariant approach similar
to Wang et al. [72] and ‘CP’ aggregates the incident nodes using a pooling approach similar to
Hua et al. [37]. The highest performing restriction map type for each sheaf learner and dataset
is highlighted.

DeepDTNet KEGG
AUPR AUROC AUPR AUROC

SheafHyperGNN-CP 80.95 ± 0.79 74.63 ± 1.02 72.55 ± 0.66 65.28 ± 0.67
SheafHyperGNN-var1 80.70 ± 0.69 74.11 ± 0.99 72.46 ± 0.89 65.43 ± 1.02
SheafHyperGNN-var2 80.51 ± 0.63 74.15 ± 0.89 72.23 ± 0.56 64.93 ± 0.66
SheafHyperGNN-var3 81.39 ± 0.43 75.20 ± 0.72 72.59 ± 0.45 65.37 ± 0.69
SheafHyperGNN-TE-CP 81.33 ± 0.53 74.99 ± 0.69 72.41 ± 0.50 65.13 ± 0.75
SheafHyperGNN-TE-var1 80.71 ± 0.44 74.23 ± 0.63 72.52 ± 0.62 65.38 ± 0.82
SheafHyperGNN-TE-var2 81.09 ± 0.84 74.68 ± 1.11 72.18 ± 0.47 64.99 ± 0.64
SheafHyperGNN-TE-var3 81.50 ± 0.48 75.28 ± 0.79 72.52 ± 0.44 65.24 ± 0.47

5.4 Discussion
Sheaves perform well on heterogeneous data. From Tables 5.2, 5.6 and 5.9, it is clear
that the proposed heterogeneous sheaf learners achieve either state-of-the art or com-
petitive performance across all of the benchmark statistics with an increase in model
performance of up to 2% depending on the dataset. The key limitation of the current
results is the expressivity of the sheaf models. The SheafGNN architecture is based off
a GCN [42], which is less expressive than an MPNN with MLPs for the update and mes-
sage functions. Meanwhile, the SheafHNN is based off a HyperGNN [16], which is less
expressive than a DeepAllSets or AllSetTransformer architecture. This limitation is fixed
in Chapter 6, which introduces general sheaf message passing methods for graphs and
hypergraphs that provide more general and expressive sheaf architectures than existing
methods.

Sheaves learn type-specific communication schemes. Chapter 4 motivates the use
of sheaves for heterogeneous data and argues that the restriction maps become special-
ised to the edge and node types in the data and learn common ‘communication tunnels’
between different types or modalities. Figure 5.1 demonstrates this is true, as linear
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probing shows that NSD architectures implicitly encode the type information present in
the data.

However, these results have two key limitations. Firstly, the results are only for Sheaf-
NSD architectures and not repeated for the other proposed heterogeneous sheaf learners.
This was due to time and computing resource constraints and is left as future work. Doing
this would substantially improve the robustness of this observation and help to explore
possible reasons behind the effect of the type information. Secondly, linear probing does
not explore the underlying structure of the restriction maps. This could be explored
by using either T-SNE [47] or UMAP [48] to embed the restriction maps into a lower
dimensional latent space to allow for visualisation. If the restrictionmaps learn to encode
type-specific communication mechanisms, we would expect to see restriction maps of
similar edge types clustered together. Different sheaf learners could then be compared
using clustering metrics such as the Rand index [55], cluster purity and completeness.
In this case, cluster purity and completeness are likely to be the most useful metrics [57].

Type information improves model performance. From the results in Tables 5.2, 5.6
and 5.9, the sheaf learners proposed in Chapter 4 outperform the standard Sheaf-NSD
across all datasets bar MovieLens with a statistically significant performance gap. The
results suggest that the type information allows the sheaf to better account for the un-
derlying heterogeneity in the data, supporting the motivation in Chapter 4. From the
current results, it is hard to say whether the type information helps the restriction maps
specialise to different types. However, from Figure 5.1 we can infer that this is likely,
as Sheaf-NSD models implicitly encode the node and edge types. Verifying this would
require a series of clustering and linear probing experiments on each sheaf learner, such
as those discussed above and is left as future work.

Chapter summary. This chapter has sought to empirically validate the sheaf
learners proposed in Chapter 4 on a series of heterogeneous benchmark datasets.
The sheaf learners achieve competitive or state-of-the-art performance across all
data sets, including heterogeneous hypergraphs. In the next chapter, I develop a
general framework for sheaf message passing for graphs and hypergraphs. Addi-
tionally, I introduce HyperSheaf, a library containing implementations of all of the
sheaf learners’ architectures proposed in this report.
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Chapter 6

A general sheaf message passing
framework

This chapter shows how cellular sheafs can be attached to different forms of message
passing-based neural architectures through a general sheaf message passing method for
both graphs and hypergraphs.

6.1 Sheaf Message Passing Neural Networks
To adapt Message Passing Neural Networks to operate on a sheaf (𝒢, ℱ), I introduce
Sheaf Message Passing Neural Networks (Sheaf-MPNNs). Whereas a standard MPNN
operates on the node feature vectors, a Sheaf-MPNN operates on the 0-cochain x ∈
𝐶0(𝒢, ℱ). Until now, it has been assumed that all sheaves have the same stalk dimen-
sion or that the same space ℝ𝑑 is used for each node and edge stalk. However, this
precondition is unnecessary, so any general message passing approach should account
for the case where the node and edge stalks may have any arbitrary dimension.

Figure 6.1 illustrates the Sheaf-MPNN message passing approach. The update equation
for a Sheaf-MPNN at layer 𝑘 + 1 is

m(𝑘+1)
𝑢 = ⨁

𝑢,𝑣⊴𝑒
ℱ⊺

𝑢⊴𝑒 𝜓𝑒(ℱ𝑣⊴𝑒 x(𝑘)
𝑣 , ℱ𝑢⊴𝑒 x(𝑘)

𝑢 ),

x(𝑘+1)
𝑢 = 𝜑𝑢(x(𝑘)

𝑢 ,m(𝑘+1)
𝑢 ),

(6.1)

where 𝜓𝑒 ∶ ℱ(𝑒) → ℱ(𝑒) is the message function, 𝜑𝑢 ∶ ℱ(𝑢) → ℱ(𝑢) is the update
function and ⨁ is a permutation invariant aggregation function. In practice, the final
argument of 𝜓𝑒 is dropped unless it is required for that particular formulation (see the
proof of Theorem 6.1).

The message and update functions are defined for each node stalk and edge stalk it
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𝑏⊴𝑒𝑎𝑏

Sheaf MPNNMPNN

Figure 6.1: (LEFT): Dataflow of a MPNN (adapted from Bronstein et al. [7]). (RIGHT): Dataflow
of a sheaf message passing network where the grey arrows represent the first step and the black
arrows represent the final aggregation step.

operates on, as each may be an arbitrary space. In practice, the stalk dimension 𝑑 is
fixed to maintain tractability and to allow the message and update functions to be shared
between the stalks. This yields an architecture that generalises many common sheaf
neural network architectures since both Neural Sheaf Diffusion [6] and Sheaf Attention
Networks [4] are special cases of Sheaf-MPNN. All proofs are provided in Appendix B.1.

Theorem 6.1. Neural Sheaf Diffusion is a special case of Sheaf-MPNN.

Theorem 6.2. SheafAN and Res-SheafAN are special cases of Sheaf-MPNN.

Theorem 6.3. MPNNs are a special case of Sheaf-MPNN.

6.2 SheafAllSet: sheaf message passing for hypergraphs
I propose SheafAllSet, which modifies AllSet [10] to operate on top of a sheaf. Let
𝑉𝑒 = {{ℱ𝑢⊴𝑒 x𝑢 ∶ 𝑢 ∈ 𝑒}} be the multiset of all representations of nodes contained in the
hyperedge 𝑒 projected into the hyperedge stalk and 𝐸𝑢 = {{ℱ⊺

𝑢⊴𝑒 h𝑒 ∶ 𝑢 ∈ 𝑒}} be the
multiset of hyperedge representations containing node 𝑢 projected into the node stalk.
The SheafAllSet framework uses the update rule

x(𝑘+1)
𝑢 = 𝑓ℰ→𝒱(𝐸(𝑘+1)

𝑢 ; x(𝑘)
𝑢 ),where h(𝑘+1)

𝑒 = 𝑓𝒱→ℰ(𝑉 (𝑘)
𝑒 ;h(𝑘)

𝑒 ) (6.2)

where 𝑓𝒱→ℰ and 𝑓ℰ→𝒱 are arbitrary functions that are permutation invariant with respect
to the first argument. We may also distinguish the aggregating node 𝑢 from the multiset
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Figure 6.2: Illustration of SheafAllSet. Illustration of the SheafAllSet message passing approach
on a hypergraph showing how the node 𝑣 is updated.

𝑉𝑒, giving the following SheafAllSet variant:

x(𝑘+1)
𝑢 = 𝑓ℰ→𝒱(𝐸(𝑘+1)

𝑢 ; x(𝑘)
𝑢 ),where h(𝑘+1),𝑢

𝑒 = 𝑓𝒱→ℰ(𝑉 (𝑘)
𝑒∖𝑢;h(𝑘)

𝑒 ; ℱ𝑢⊴𝑒 x(𝑘)
𝑢 ). (6.3)

However, unless required, the last argument of 𝑓𝒱→ℰ is omitted.

This is a two-stage message passing process (Figure 6.2). First, the nodes are projec-
ted onto their incidence hyperedge stalk, where they are then aggregated to compute
a single hyperedge representation. The hyperedge representations are then projected
back into their incidence node stalks and aggregated to produce the final message. The
SheafAllSet framework gives a general approach to developing a sheaf hypergraph net-
work and generalises both SheafHyperGNN [13] and SheafHyperGCN [13]. All proofs
are provided in Appendix B.1.

Theorem 6.4. SheafHyperGNN and SheafHyperGCN are special cases of SheafAllSet.

Theorem 6.5. AllSet is a special case of SheafAllSet.

Theorem 6.6. Sheaf-MPNN is the special case of SheafAllSet applied to graphs.

6.3 Learning Sheaf-MPNN and SheafAllSet layers
Let 𝐹𝑢 = {{m𝑣 ∶ 𝑣 ∈ 𝒩𝑢}} be a multiset represented by the batch tensor F ∈ ℝ|𝒩𝑢|×𝑑×𝑓 .
Following Tabaghi and Wang [64, Theorem 7], a Sheaf-MPNN can be represented as

x(𝑘+1)
𝑢 = 𝑓(F) = 𝜌( ∑

𝑢,𝑣⊴𝑒
𝜙(ℱ⊺

𝑢⊴𝑒 𝜓𝑒(ℱ𝑣⊴𝑒 x(𝑘)
𝑣 ))), (6.4)

where 𝑓 is a permutation invariant function over F [see 64, Definition 4] and 𝜌, 𝜙 are
some arbitrary bijective functions.
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SheafDeepSet. If 𝜙, 𝜌 and 𝜓𝑒 are MLPs with sufficient capacity, the resulting model is a
universal approximator for Sheaf-MPNNs, termed SheafDeepSet. A SheafDeepSet layer
is defined by the update equation:

x(𝑘+1)
𝑢 = MLP(m(𝑘+1)

𝑢 ),where m(𝑘+1)
𝑢 = ∑

𝑢,𝑣⊴𝑒
MLP(ℱ⊺

𝑢⊴𝑒 MLP(ℱ𝑣⊴𝑒 x(𝑘)
𝑣 )). (6.5)

As MLPs are not defined to operate on matrices, the behaviour is defined to be: (i) the
input is first flattened to an ℝ𝑑𝑓 vector; (ii) the vector is fed through the MLP layers; and
(iii) the output is reshaped back to an ℝ𝑑×𝑓 matrix.

SheafSetTransformer. Lee et al. [44] argues that the unweighted sum in DeepSet makes
it difficult to learn the importance of each contributing term. To fix this, they suggest the
SetTransformer architecture, which has been shown to outperform DeepSet. This may
be lifted to create a SheafSetTransformer. Let the multiset

𝑆𝑢 = {{Vec(ℱ⊺
𝑢⊴𝑒 MLP(ℱ𝑣⊴𝑒 x𝑣)) ∶ 𝑣 ∈ 𝒩𝑢}}

be represented as the matrix S𝑢 ∈ ℝ|𝑆𝑢|×𝑑𝑓 where Vec(⋅) refers to the vectorisation oper-
ation. This multiset may then be fed into a SetTransformer architecture [44] to give a
SheafSetTransformer with the overall architecture:

Z(𝑘+1)
𝑢 = SAB(SAB(S(𝑘)

𝑢 )) x(𝑘+1)
𝑢 = MLP(SAB(PMA1(Z(𝑘+1)

𝑢 ))) (6.6)

where SAB is set attention block [44, Sec. 3.1], PMA𝑘 performs pooling with multihead
attention [44, Sec. 3.2] to return 𝑘 vectors and the MLP operates row-wise so is permuta-
tion equivariant.

Theorem 6.7. A SheafSetTransformer is a universal approximator for Sheaf-MPNNs.

Chien et al. [10] demonstrated that DeepAllSets and DeepSetsTransformer are univer-
sal approximators for AllSet. To construct a universal approximator for SheafAllSet,
DeepAllSets and DeepSetsTransformer are lifted to sheaves, yielding SheafDeepAllSets
and SheafAllSetTransformer, respectively.

SheafDeepAllSets. SheafDeepAllSets is a purely MLP SheafAllSets layer and is defined
as

h(𝑘+1)
𝑒 = MLP(∑

𝑢∈𝑒
MLP(ℱ𝑢⊴𝑒 x(𝑘)

𝑢 )),

x(𝑘+1)
𝑢 = MLP( ∑

𝑒∶𝑢∈𝑒
MLP(ℱ⊺

𝑢⊴𝑒 h
(𝑘+1)
𝑒 )).

(6.7)

SheafAllSetTransformer. Let ̃𝑉𝑒 = {{Vec(ℱ𝑢⊴𝑒 x𝑢) ∶ 𝑢 ∈ 𝑒}} be the vetorised multiset
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of 𝑉𝑒 and ̃𝐸𝑢 = {{{{Vec(ℱ⊺
𝑢⊴𝑒 h𝑒) ∶ 𝑢 ∈ 𝑒}}}} the vectorised multiset of 𝐸𝑢. A SheafAll-

SetTransformer uses an AllSetTransformer [10, Eqn. 8] as each of the multiset functions
and has the architecture

h(𝑘+1)
𝑒 = 𝑓𝒱→ℰ( ̃𝑉 (𝑘)

𝑒 ) = AllSetTransformer( ̃𝑉 (𝑘)
𝑒 )

x(𝑘+1)
𝑢 = 𝑓𝒱→ℰ( ̃𝐸(𝑘+1)

𝑢 ) = AllSetTransformer( ̃𝐸(𝑘+1)
𝑢 ).

(6.8)

Theorem 6.8. SheafDeepAllSets and SheafAllSetTransformer are universal approximators
of SheafAllSet.

6.4 Attaching sheaves to MPNNs

Algorithm 1: MPNN2Sheaf-MPNN
Data: Node features X, an MPNN with update function 𝜑 and message function

𝜓 and a sheaf (𝒢, ℱ).
Result: Converts an MPNN into a Sheaf-MPNN by attaching the sheaf (𝒢, ℱ)

with stalk dimension 𝑑.
1 Use an MLP to project the node features into their node stalks
2 foreach 𝑢 ∈ 𝑉 do
3 Compute the message m𝑢 = ⨁𝑢,𝑣⊴𝑒 ℱ⊺

𝑢⊴𝑒 𝜓(ℱ𝑢⊴𝑒 x𝑢, ℱ𝑣⊴𝑒 x𝑣)
4 Compute the updated node features x′

𝑢 = 𝜑(x𝑢,m𝑢)
5 end
6 return X′

Algorithm 1 demonstrates how an MPNN may be converted into a Sheaf-MPNN (as long
as the change in input shape is accounted for in the message and update functions)
by modifying the message passing process. This can be easily implemented in any of
the standard GNN libraries, such as PytorchGeometric (PyG) [17] or Deep Graph Lib-
rary (DGL) [71]. In PyG, Algorithm 1 can be implemented as an adapter class to the
MessagePassing1 base class used to define GNN layers. In DGL, this would be done
functionally using a user-defined message passing function.2 Algorithm 2 demonstrates
how this approach may be applied to an AllSet model to create a SheafAllSet model.

1https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html
2See https://docs.dgl.ai/en/0.8.x/guide/message-api.html, this implementation would rely on

higher-order functions that would take in a message passing function as an argument.
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Algorithm 2: AllSet2SheafAllSet
Data: A hypergraph ℋ = (𝐸, 𝑉 ), an AllSet model with multi set functions 𝑓ℰ→𝒱

and 𝑓𝒱→ℰ, a sheaf (𝒢, ℱ).
Result: Converts an AllSet model into a SheafAllSetModel attaching the sheaf

(𝒢, ℱ) with stalk dimension 𝑑.
1 Use an MLP to project the node features into their node stalks
/* Message passing step 1 */

2 foreach 𝑒 ∈ ℰ do
3 Compute 𝑉𝑒 using ℱ
4 h𝑒 ≔ 𝑓𝒱→ℰ(𝑉𝑒)
5 end
/* Message passing step 2 */

6 foreach 𝑢 ∈ 𝒱 do
7 Compute 𝐸𝑢 using ℱ
8 x′

𝑢 ≔ 𝑓ℰ→𝒱(𝐸𝑢)
9 end

10 return X′

6.5 HyperSheaf: a SheafHNN library for heterogeneous
data

Previous work has demonstrated the benefit of sheaves in heterophilic settings where
edges tend to connect dissimilar nodes. Most real-world graphs and hypergraphs are ho-
mophilicwhere edges or hyperedges tend to connect nodes with the same class or similar
features, or as McPherson et al. [49] states ‘birds of a feather flock together’. As a result,
sheaves have been a niche technique for solving oversmoothing in heterophilic domains
with few wider applications. However, this work demonstrates the benefits of sheaves for
a much wider class of problems, heterogeneous graph and hypergraph data, with many
wider applications far beyond those discussed in the previous chapter. To make these
techniques more accessible and to aid in reproducibility, I develop HyperSheaf, a library
for heterogeneous sheaf-based hypergraph neural networks built on top of PyTorch [54]
and PyG [17].

In HyperSheaf, a heterogeneous hypergraph ℋ = (X, I,H,S,T) is represented by a node
feature matrix X ∈ ℝ|𝒱|×𝑓 of |𝒱| nodes, a hyperedge index I encoding the sparse incidence
matrix in COOrdinate (COO) format, an optional hyperedge feature matrix H ∈ ℝ|ℰ|×𝑑

of |ℰ| hyperedges, a vector of node types S ∈ ℝ1×|𝒱| and a vector of hyperedge types
T ∈ ℝ1×|ℰ|. All user-facing APIs are designed to be used in an imperative compositional
style similar to PyTorch’s.

Hyperedge feature builders. Implements approaches for computing hyperedge fea-
tures if they do not exist during the message passing process. HyperSheaf provides the
BaseHeFeatBuilder interface to allow users to implement custom hyperedge features.
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The user only needs to define the method compute_he_features to use it. Listing 1
demonstrates how a custom hyperedge feature builder is implemented, in this case re-
turning the input hyperedge features.

class InputFeatsHeFeatBuilder(BaseHeFeatBuilder):
...
def compute_he_features(self, x, he_feats, hyperedge_index):

row, col = hyperedge_index
xs = torch.index_select(x, dim=0, index=row)
es = torch.index_select(he_feats, dim=0, index=col)

return xs, es

Listing 1: Example hyperedge feature builder. This hyperedge feature builder returns the input
hyperedge features.

Heterogeneous sheaf learners. Implements different approaches to compute the sheaf
restriction maps parametrically as the function

ℱ𝑢⊴𝑒 = 𝜙(x𝑢,h𝑒, 𝜏𝑢, 𝜏𝑒) (6.9)

where x𝑢 is the vector representation of the node 𝑢, h𝑒 the representation of the hy-
peredge 𝑒, 𝜏𝑢 deontes the type of node 𝑢 and 𝜏𝑒 denotes the type of the hyperedge
𝑒. HyperSheaf provides the HeteroSheafLearner interface to implement custom sheaf
learners where the user must implement the method 𝜙 called predict_sheaf. Listing 2
demonstrates how Sheaf-TE can be implemented in HyperSheaf.

class TypeConcatSheafLearner(HeteroSheafLearner):
...
def predict_sheaf(self, node_feats, he_feats, he_index,

node_types, he_types):↪

node, hyperedge = he_index
node_types_onehot =

F.one_hot(node_types.to(torch.long))↪

hyperedge_types_onehot =
F.one_hot(he_types.to(torch.long))↪

x_type = torch.index_select(node_types_onehot,
dim=0, index=node)↪

e_type = torch.index_select(hyperedge_types_onehot,
dim=0, index=hyperedge)↪

# sigma(MLP(x_v || h_e || t_v || t_u)))
h_sheaf = torch.cat((node_feats, he_feats, x_type,

e_type), dim=-1)↪

h_sheaf = self.lin(h_sheaf)
return h_sheaf

Listing 2: Example heterogeneous sheaf learner. HyperSheaf implementation of Sheaf-TE.
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Models. Finally, the sheaf learners and hyperedge feature builders are used to imple-
ment SheafHNN architectures. Presently, HyperSheaf only includes implementations
for a SheafHyperGNN and SheafHyperGCN with the heterogeneous sheaf learners, and
hyperedge feature builders mentioned so far in the report. However, in the future, it
shall be extended to include implementations of both SheafDeepAllSets and SheafAll-
SetTransformer.

6.6 Discussion
The theoretical results in Sections 6.1 and 6.2 demonstrate that Sheaf-MPNN and SheafAll-
Set generalise existing sheaf architectures. The discussion of Chapter 5 mentioned that
a key limitation of the experimental results is the expressivity of the underlying sheaf ar-
chitectures. This limitation has now been resolved. The modified NSD model used in the
graph experiments can be replaced with either a SheafDeepSet or SheafSetTransformer
model, and the SheafHyperGNN used in the hypergraph experiments can be replaced
with either a SheafDeepAllSets or SheafAllSetTransformer architecture. Due to their
increased expressivity, the model performance will likely increase significantly and po-
tentially achieve state-of-the-art results.

Limitations. There are two key limitations of the framework and theoretical results
presented in this chapter. Firstly, the lack of expressivity results of the Sheaf-MPNN and
SheafAllSet layers presented in Section 6.3 means there are no theoretical guarantees
that the layers are more expressive than existing ones. These were not added due to
time constraints but can be easily derived from the existing results. Secondly, these
layers in Section 6.3 have not been implemented or empirically tested. A possible future
extension would be to implement these models in HyperSheaf and rerun the experiments
from Chapter 5.

Chapter summary. This chapter introduced the novel Sheaf-MPNN and SheafAll-
Sets frameworks to create general sheaf graphs and hypergraph neural networks,
respectively. It then introduces a series of neural architectures that universally
approximate both frameworks with SheafDeepSets and SheafSetTransformer for
graphs and SheafDeepAllSets and SheafAllSetTransformer for hypergraphs. Next,
it shows how any general message-passing neural network can be adapted to op-
erate on top of a cellular sheaf, which could then be implemented into commonly
used frameworks. Finally, I introduce HyperSheaf, a library for sheaf-based het-
erogeneous hypergraphs.
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Chapter 7

Summary and conclusions

7.1 Project summary
In this project, I investigated how sheaf-based neural architectures can be used to im-
prove performance on heterogeneous graph and hypergraph datasets. I demonstrate
that by simply modifying the sheaves to account for the type information, the result-
ing architectures achieve competitive or state-of-the-art performance across all of the
benchmark datasets. The framework presented in Chapter 6 provides a general method
and approach to construct sheaf graph and hypergraph neural architectures that may be
easily applied to different heterogeneous and multi-modal domains not explored in this
work. I believe that the methods, general framework and HyperSheaf library presented
in this report can further contribute to the wider geometric deep learning and TDL com-
munity, extending beyond the scope of this report. Figure 7.1 provides an overview of
the contributions and work completed in the project.

7.2 Code availability and software engineering
In addition to the codebase used to implement the models and experiments in Chapter 5,
HyperSheaf provides a useable API and interface to implement new model architectures
or datasets. The library is designed with usability and familiarity in mind, and to this
end, the API is inspired by PyTorch and PyG. The repository README contains install
instructions andmore extensive documentation. A minimal working example is provided
in tutorial.py in the repository root. An initial version of the HyperSheaf library can
be found at:

https://github.com/AspieCoder1/HyperSheaf
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Figure 7.1: Overview of work completed for the project. Heterogeneous sheaf learners:
I introduced a series of novel sheaf learners that take into account the type information con-
tained in the multi-modal graph or hypergraph. Experimental evaluation: I performed a series
of benchmarking experiments to explore the performance of the proposed heterogeneous sheaf
architecture on various heterogeneous or multi-modal tasks. I find that my proposed architec-
tures achieve state-of-the-art or competitive results on all benchmarks. A general sheaf message
passing framework: I proposed the Sheaf-MPNN and SheafAllSet frameworks to build general
SheafGNN and SheafHNN layers, as well as to introduce a series of general architectures that
universally approximate both frameworks. I conclude the chapter by briefly discussing the Hyper-
Sheaf library, which I created for easily implementing multi-modal hypergraph neural networks
and reproducing the results in this dissertation.

57



7.3 Future work
Potential future work can be broadly classified into two overarching themes:

• Adding additional functionality and documentation tomakeHyperSheafmore com-
plete and user-friendly.

• Lifting the constructions presented in Chapter 6 to other topological domains using
the message passing framework presented in Papillon et al. [53].

7.3.1 Extending the HyperSheaf library
Presently, the initial version of HyperSheaf only contains the implementations of a Sheaf-
HyperGNN and SheafHyperGCN with the sheaf learners discussed in this report. In the
future, I intend to add both a SheafDeepAllSets and SheafAllSetsTransformer implement-
ation to the library. Additionally, I wish to redesign the interface exposed by the library
in order to make it more modular and easier to adapt. Ideally, this should be as close to
‘plug and play’ as possible, where it is easy to add new sheaf learners, hyperedge feature
computation methods, and models in a component-based system. This would allow the
library to have a declarative and module compositional style similar to that of PyTorch.
Finally, the library should be properly documented and tested to ensure that it is easy
to use and maintain in the long term.

7.3.2 Into domains topological
As discussed at the end of Chapter 2, Hajij et al. [26] and Papillon et al. [53] have
proposed a four-stage message passing framework to generate Topological Neural Net-
works (TNNs). The general framework proposed in Chapter 6 can be expressed using
this message passing framework, lifting sheafs into higher-order topological domains to
combinatorial complexes. This would give the most general sheaf framework possible
for topological and geometric domains. This sheaf framework could then be included in
the Awesome TNNs [53] library and implemented as part of TopoX [27] which is a suite
of tools for working with topological data and training TDL architectures in a uniform
way similar to existing tooling for geometric domains.
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Appendix A

Chapter 5 Supplementary Material

A.1 Dataset information

A.1.1 Heterogeneous node classification
DBLP is a citation graph of bibliographic data for computer science with four node types:
authors, papers, terms and venues. The aim is to predict which of the 4 classes an author
node has.

IMDB is a graph of movie data and related metadata. The aim is to predict a movie’s
genre: action, comedy, drama, romance, and thriller. This is a multi-label classification
task.

ACM is another graph of computer science citations. I use the subset from the original
HAN paper [73]. The task is to classify the category of each paper.

A.1.2 Heterogeneous link prediction
LastFM [18] is a heterogeneous graph of music listening habits with three node types:
user, artist and artist tags. The aim is to predict whether a user listens to an artist.

MovieLens1 is a heterogeneous rating graph from the MovieLens website and consists of
two node types: movie and user. The task is to predict whether or not a user recommends
a movie.

A.1.3 Heterogeneous DTI prediction
DeepDTNet [79] consists of information about their drugs and their interaction between
diseases and proteins from the Drug-Target Network [77], a bipartite graph of FDA ap-
proved drugs and proteins linked by interactions, and augmented by the DrugBank [43,

1https://movielens.org/

67

https://movielens.org/


74] database. The data is provided as three incidence matrices: drug-protein interac-
tions, drug-disease interactions, and protein-disease interactions. The task is to predict
whether a particular drug will interact with the protein.

KEGG [51] consists of interactions between drugs, genes, and disease from the KEGG [40]
biological database of genenomic data. Like with DeepDTNet, the raw data is three in-
cidence matrices. The aim is to predict possible interactions between drugs and genes.

A.2 Restriction map implementation
Each restriction map is computed as ℱ𝑢⊴𝑒 = MLP(x𝑢 ‖ x𝑣) in the case of graphs, and
ℱ𝑢⊴𝑒 = MLP(x𝑢 ‖h𝑒) for hypergraphs.

Diagonal restriction maps. For the diagonal restriction maps, the MLP outputs 𝑑 ele-
ments which are used to define the diagonal of the restriction map.

General restriction maps. For general restriction maps, the MLP outputs 𝑑2 elements
that are then rearranged to form a 𝑑 × 𝑑 matrix representing the restriction map.

Orthogonal restriction maps. For orthogonal restriction maps, MLP outputs ⌊𝑑(𝑑−1)
2 ⌋

elements, and then the Torch Householder library [52] is used to generate a 𝑑 × 𝑑 ortho-
gonal restriction map.

Low rank restriction maps. To predict a rank 𝑟 restriction map, the MLP outputs 2𝑑𝑟+𝑑
elements that are rearranged into two matrices A,B ∈ ℝ𝑑×𝑟 and a vector c ∈ ℝ𝑑. The
final restriction map is computed as AB⊺ + diag(c).
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Appendix B

Chapter 6 supplementary material

B.1 Proofs
Theorem 6.1. Neural Sheaf Diffusion is a special case of Sheaf-MPNN.

Proof. Let X̃ = 𝐷−1/2(I𝑛 ⊗W1)XW2. Equation (2.11) can be expressed node-wise as

x(𝑘+1)
𝑢 = x(𝑘)

𝑢 −𝜎(𝐷−1/2
𝑢 ∑

𝑢,𝑣⊴𝑒
ℱ⊺

𝑢⊴𝑒(ℱ𝑢⊴𝑒 x̃𝑣 − ℱ𝑣⊴𝑒 x̃𝑣)).

This is a Sheaf-MPNN defined as

m(𝑘+1)
𝑢 = 𝜎(𝐷−1/2

𝑢 ∑
𝑢,𝑣⊴𝑒

ℱ⊺
𝑢⊴𝑒(ℱ𝑢⊴𝑒 x̃

(𝑘)
𝑢 − ℱ𝑣⊴𝑒 x̃𝑣))

and update function x(𝑘+1)
𝑢 = x(𝑘)

𝑢 −m(𝑘+1)
𝑢 .

Theorem 6.2. SheafAN and Res-SheafAN are special cases of Sheaf-MPNN.

Proof. Let X̃ = (I𝑛 ⊗W1)XW2. A SheafAN layer can be rewritten node-wise as

x(𝑘)
𝑢 = 𝜎( ∑

𝑣∈𝒩𝑢

𝛼𝑢𝑣P𝑢𝑣x̃
(𝑘)
𝑣 )

where 𝛼𝑢𝑣 = 𝑎(x(𝑘)
𝑢 , x(𝑘)

𝑣 ) and P𝑢𝑣 = ℱ⊺
𝑢⊴𝑒 ℱ𝑣⊴𝑒. This is a Sheaf-MPNNwith themessage

function m(𝑘+1)
𝑢 = ∑𝑣∈𝒩𝑢

𝛼𝑢𝑣 ℱ⊺
𝑢⊴𝑒 ℱ𝑣⊴𝑒 x𝑣 and the update function x(𝑘+1)

𝑢 = m(𝑘+1)
𝑢 . A

Res-SheafAN layer can be expressed node-wise as

x(𝑘)
𝑢 = 𝜎( ∑

𝑣∈𝒩𝑢

𝛼𝑢𝑣P𝑢𝑣x̃
(𝑘)
𝑣 − x̃(𝑘)

𝑢 ),
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which defines a Sheaf-MPNN with the same message function as a SheafAN but with the
update function x(𝑘+1)

𝑢 = m(𝑘+1)
𝑢 − x̃(𝑘)

𝑢 .

Theorem 6.3. MPNNs are a special case of Sheaf-MPNN.

Proof. Equation (2.1) may be recovered by using the trivial sheaf.

Theorem 6.4. SheafHyperGNN and SheafHyperGCN are special cases of SheafAllSet.

Proof. Let X̃ = 𝐷−1/2(I𝑛 ⊗W2)XW2. First, I prove that a SheafHyperGNN layer is a
special case of SheafAllSet. A SheafHyperGNN layer update can be expressed node-wise
as

x(𝑘+1)
𝑢 = 𝜎(𝐷−1/2

𝑢 x̃(𝑘)
𝑢 − 𝐷−1/2

𝑢 ∑
𝑒;𝑢∈𝑒

1
𝛿𝑒

ℱ⊺
𝑢⊴𝑒( ∑

𝑣∈𝑒∖𝑢
(ℱ𝑢⊴𝑒 x̃

(𝑘)
𝑢 − ℱ𝑢⊴𝑒 x̃

(𝑘)
𝑣 ))).

This is a SheafAllSet model such that

h(𝑘+1),𝑢
𝑒 = 𝑓𝑉 →𝐸(𝑉 (𝑘)

𝑒∖𝑢;h(𝑘)
𝑒 ; ℱ𝑢⊴𝑒 x(𝑘)

𝑢 ) = ∑
𝑣∈𝑒∖𝑢

(ℱ𝑢⊴𝑒 x̃
(𝑘)
𝑢 − ℱ𝑣⊴𝑒 x̃

(𝑘)
𝑣 ),

x(𝑘+1)
𝑢 = 𝑓𝐸→𝑉 (𝐸(𝑘+1)

𝑢 ; x̃(𝑘)
𝑢 ) = 𝜎(𝐷−1/2

𝑢 x̃(𝑘)
𝑢 − 𝐷−1/2

𝑢 ∑
𝑒;𝑢∈𝑒

1
𝛿𝑒

ℱ⊺
𝑢⊴𝑒 h

(𝑘+1),𝑢
𝑒 ).

The non-linear Laplacian used in the SheafHyperGCN layer may be reformulated as

𝐿̄ℱ(x)𝑢 ≔ ∑
𝑒;𝑢∈𝑒

1
𝛿𝑒

ℱ⊤
𝑢⊴𝑒(∑

𝑣∈𝑒
𝑤𝑢𝑣,𝑒(ℱ𝑢⊴𝑒 x𝑢 − ℱ𝑣⊴𝑒 x𝑣))

where 𝑤𝑢𝑣 are weights defined as

𝑤𝑢𝑣,𝑒 =
⎧{
⎨{⎩

1
𝛿𝑒

if 𝑢 ∼𝑒 𝑣
0 otherwise

The SheafHyperGCN update equation can be rewritten node-wise as

x(𝑘+1)
𝑢 = 𝜎(𝐷−1/2

𝑢 x̃(𝑘)
𝑢 − 𝐷−1/2

𝑢 ∑
𝑒;𝑢∈𝑒

ℱ⊺
𝑢⊴𝑒(∑

𝑣∈𝑒
𝑤𝑢𝑣,𝑒(ℱ𝑢⊴𝑒 x̃

(𝑘)
𝑢 − ℱ𝑣⊴𝑒 x̃

(𝑘)
𝑣 ))),

where x̃𝑢 = W1 x𝑢 W2. This is a SheafAllSet model where x̃𝑢 = 𝐷−1/2
𝑢 W1 x𝑢 W2 and

h(𝑘+1),𝑢
𝑒 = 𝑓𝑉 →𝐸(𝑉 (𝑘)

𝑒∖𝑢;h(𝑘)
𝑒 ; ℱ𝑢⊴𝑒 x̃

(𝑘)
𝑢 ) = ∑

𝑣∈𝑒
𝑤𝑢𝑣,𝑒(ℱ𝑢⊴𝑒 x̃

(𝑘)
𝑢 − ℱ𝑣⊴𝑒 x̃

(𝑘)
𝑣 ),

x(𝑘+1)
𝑢 = 𝑓𝐸→𝑉 (𝐸(𝑘+1)

𝑢 ; x(𝑘)
𝑢 ) = 𝜎(𝐷−1/2

𝑢 x̃(𝑘)
𝑢 − 𝐷−1/2

𝑢 ∑
𝑒;𝑢∈𝑒

ℱ⊺
𝑢⊴𝑒 h

(𝑘+1),𝑢
𝑒 ).
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Theorem 6.5. AllSet is a special case of SheafAllSet.

Proof. AllSet may be recovered by using the trivial sheaf with SheafAllSet.

Theorem 6.6. Sheaf-MPNN is the special case of SheafAllSet applied to graphs.

Proof. Equation (6.1) may be rewritten as the SheafAllSet update rule

h(𝑘+1),𝑢
𝑒 = 𝑓𝒱→ℰ(𝑉 (𝑘)

𝑒∖𝑢;h(𝑘)
𝑒 ) = 𝑓𝒱→ℰ({ℱ𝑣⊴𝑒 x(𝑘)

𝑣 };h(𝑘)
𝑒 ) = ℱ𝑣⊴𝑒 x(𝑘)

𝑣

x(𝑘+1)
𝑢 = 𝑓ℰ→𝒱(𝐸(𝑘+1)

𝑢 ; x(𝑘)
𝑢 ) = 𝜑𝑢(x(𝑘)

𝑢 , ⨁
𝑒∶𝑢∈𝑒

ℱ⊺
𝑢⊴𝑒 𝜓𝑒(h(𝑘+1),𝑢

𝑒 )).

Theorem 6.7. A SheafSetTransformer is a universal approximator for Sheaf-MPNNs.

Proof. By Theorem 1 of Lee et al. [44], a SheafSetTransformer layer can be expressed as

MLP( ∑
𝑢,𝑣⊴𝑒

MLP(Vec(ℱ⊺
𝑢⊴𝑒 MLP(ℱ𝑣⊴𝑒 x𝑣)))).

As matrix vectorisation is a linear operation, it may be accounted for as part of the MLP.
This means that a SheafSetTransformer layer may be rewritten as

MLP( ∑
𝑢,𝑣⊴𝑒

MLP(ℱ⊺
𝑢⊴𝑒 MLP(ℱ𝑣⊴𝑒 x𝑣))),

or as a SheafDeepSetLayer. As such, it must also universally approximate a Sheaf-MPNN.

Theorem 6.8. SheafDeepAllSets and SheafAllSetTransformer are universal approximators
of SheafAllSet.

Proof. By Tabaghi andWang [64, Theorem 7], SheafDeepAllSets is a universal approxim-
ator of SheafAllSet. As a consequence of Proposition 4.1 of Chien et al. [10], a SheafAll-
SetTransformer transformer layer may be expressed as

𝑓𝒱→ℰ( ̃𝑉 (𝑘)
𝑒 ) = MLP(∑

𝑢∈𝑒
MLP(Vec(ℱ𝑢⊴𝑒 x𝑢)))

𝑓𝒱→ℰ( ̃𝐸(𝑘+1)
𝑢 ) = MLP(∑

𝑢∈𝑒
MLP(Vec(ℱ⊺

𝑢⊴𝑒 h𝑒))).
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As matrix vectorisation is a linear operation, it may be universally approximated by an
MLP. So, a SheafAllSetTransformer layer may be expressed as a SheafDeepAllSets layer
and universally approximates SheafAllSet.
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